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Abstract

This paper combines three online labor market platforms—LinkedIn user pro-

files, Burning Glass job postings, and Glassdoor wages—to construct a novel dataset

on college graduates from U.S. universities that contains detailed information on

their employers, occupations, and locations, as well as the tasks required in their

jobs. We document new facts about the mobility of college graduates and show how

mobility patterns differ across universities of varying rankings and locations. Esti-

mating a model in which college graduates choose firms, occupations, and locations,

we find evidence of positive sorting of higher-ranked universities matching to cog-

nitively intensive jobs and high-amenity cities. Distance significantly reduces the

probability of job matching for most universities, but has little effect for graduates

from the most elite institutions. Our analysis also reveals a sizable geographic pre-

mium in labor market outcomes for universities located in major cities.
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1 Introduction

In a recent graduate employability survey, recruiters from top companies were asked

to rank the universities that best prepare students for the workplace. Unsurprisingly,

the commonly cited elite institutions appear at the top of the list. While it is well

known that graduates from elite universities often receive stronger training and skill

development sought by top employers (Dale and Krueger, 2002) and enjoy a substantial

wage premium (Chetty, Friedman, Saez, Turner and Yagan, 2020), many of the most

prestigious U.S. universities (e.g., Yale, Cornell, University of Michigan) are located

in small towns. In contrast, large firms and high-paying jobs are disproportionately

concentrated in major metropolitan areas, but some of which host few top universities.

The geographic separation between the top universities and the major employers

is based on historical, economic, and institutional factors. Many of the most presti-

gious universities were founded in the 18th and 19th centuries, often in small towns in

the Northeast. The Morrill Land-Grant Acts of 1862 granted federal land to states for

the creation of public universities, intentionally situated outside major cities to better

serve rural communities. Many of these universities later became flagship public uni-

versities in their respective states. However, economic activities and high-paying jobs

shifted geographically due to technological innovation, westward territorial expansion,

and population growth. Once concentrated in the Northeast during the colonial era,

economic hubs eventually expanded into the Midwest during the industrial age, while

the South and West rose dramatically in the late 20th century.

This spatial mismatch between talents and employers suggests that graduates must

be highly mobile to access elite firms and secure high-wage opportunities. In contrast,

attending universities in large metropolitan areas may benefit from proximity to top

employers. While both university ranking and location likely play important roles in

shaping graduates’ job search outcomes, addressing these questions requires rich mi-

crodata.

In this paper, we bring together three online labor market platforms—LinkedIn

user profiles, Burning Glass Technologies (BGT), and Glassdoor—to construct a rich

individual-level dataset. We study the geographic mobility and job search of fresh col-

lege graduates and analyze how these outcomes differ across universities of varying

rankings and locations. Our LinkedIn data is a 2018 snapshot of user profiles that con-

tains rich information on education and employment histories. The BGT data contain

job posting information with the tasks required by each employer and detailed job ti-
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tles. Our Glassdoor data provides entry-level wages by employer and job title. We stan-

dardize the information—including employer names, locations, and occupations—and

construct a crosswalk to link these datasets.

We obtain a sample of more than 240 thousand fresh graduates who received their

bachelor’s degrees between 2016 and 2018, from 266 U.S. universities ranked in the

World University Rankings (WUR).1 We show that our sample captures nearly 10%

of all bachelor’s degree recipients from these institutions and that it is highly repre-

sentative when compared with benchmark datasets such as the U.S. Census and the

Integrated Postsecondary Education Data System (IPEDS). Compared to the matched

employer–employee datasets commonly used in the literature, our dataset offers richer

information: on the labor supply side, we observe the college each individual attended

and their field of study; on the demand side, we observe the tasks required by employer

and occupation; and on the spatial dimension, we observe the geographic location of

the college and the current location of work.

Using this newly assembled dataset, we begin by documenting four new facts about

the job search behavior of fresh college graduates. First, although more than half of

recent graduates left their university cities, most moved within the same state or to

neighboring states.2 Second, graduates from higher-ranked universities are more mo-

bile, with those from the Top 20 institutions being the most mobile group.3

Third, mobility patterns depend on the job opportunities available in university-

hosting cities. High-wage cities retain a larger share of their locally educated gradu-

ates than low-wage cities. The magnitude of this difference is substantial: comparing

Boston (one of the high-paid U.S. cities) with Pittsburgh (PA), the former retains 34.2

percentage points more of its graduates than the latter.

Fourth, among graduates from the same university, movers on average obtain jobs

with higher (Glassdoor) posted wages, greater (BGT) cognitive and social task require-

ments, and locate in higher-amenity cities compared to stayers. The compensating dif-

ferential is larger for universities in low-wage cities and smaller for those in high-wage

cities. These findings highlight the importance of worker mobility and the geographic

location of universities in shaping labor market outcomes.

Motivated by these facts, we estimate a model of college graduates sorting into firms

and occupations to evaluate the relative importance of several factors in determining
1See Section 2.1 for sample construction in detail.
2Throughout the paper, we use the terms city and commuting zone interchangeably.
3Graduates from top-ranked universities are more likely to move farther away and less likely to stay

in the same city or state, even after controlling for local wages and the share of in-state students.
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the job match. Throughout, we refer to a job as the combination of a firm and an oc-

cupation.4 Our model produces a gravity-type equation of worker sorting into jobs,

where we regress log employment shares on university and firm–occupation fixed ef-

fects. These fixed effects account for the availability of alternative employment options

for each group, as well as firm–occupation wage efficiency units and local prices, while

the residual variation is explained by the observables of interest.

Our empirical analysis incorporates three sets of observed factors. In theory, the

most emphasized determinant of worker-to-firm sorting is task complementarity (Eeck-

hout and Kircher, 2011). In our setting, it refers to the supermodular relationship be-

tween skills acquired at universities and the tasks demanded by firms. Positive sorting

occurs if graduates from higher-ranked universities have a comparative advantage in

working at more productive firms. Our rich dataset allows us to empirically measure

university–job-specific productivity. Building on the literature that emphasizes the im-

portance of education for skill acquisition (Hanushek and Kimko, 2000, Hanson and

Liu, 2021) and the varying relevance of college-imparted skills across jobs (Acemoglu

and Autor, 2011, Atalay et al., 2018), we model and estimate labor productivity using

interactions between university rankings and four commonly used task requirements

(cognitive, social, routine, and manual) obtained from BGT.

Second, we incorporate city amenities to examine how graduates from universities

of different rankings sort based on amenities. Third, we account for moving costs to cap-

ture the potential heterogeneous effects of geography on job choice across universities,

estimating interaction terms between university rankings and geographic distance. To

account for potential nonlinear effects of distance and unobserved region-specific fac-

tors, we include indicators for whether a university and a job are located in the same

city or the same state.

Our estimates reveal several findings. First, we find strong evidence of positive

sorting into cognitive tasks. Specifically, as cognitive task requirements become one

standard deviation higher (the difference of working as a computer scientist between

Google and Sanmina corporation, an American electronics manufacturing services),

graduates from Top 20 universities have a 0.199 higher in log points or about 19.9%

more likely to match to the more cognitive-intensive job, relative to the benchmark

group (outside Top 1000), holding other factors the same. Second, we find evidence of

positive sorting on amenities: graduates from Top 20 universities, relative to the bench-
4In the paper, we refer to firms as the combination of a company name and the location of its estab-

lishment. Thus, establishments of the same company in different locations are treated as distinct firms
in our analysis.
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mark, are 6.8% more likely to choose a job in Seattle (99th percentile in amenities) than

in Detroit (25th percentile in amenities). While prior studies have primarily examined

spatial sorting and amenities between college- and non-college-educated workers (Dia-

mond, 2016, Diamond and Gaubert, 2022), our findings complement this literature by

highlighting positive sorting across graduates from different universities.

Third, we find that geographic distance reduces the likelihood of a job match for

most universities, but has no effect on the job choices of Top 20 universities. The dis-

tance effect for lower-ranked universities is sizable: for example, comparing graduates

from Boston College and UC Davis—both ranked outside the Top 20 but within the

Top 200 globally—the former are 18.2% more likely to obtain a job in New York City

than the latter. In contrast, no such difference exists between Harvard and Stanford

graduates in terms of matching to the same job in New York. The results hold when we

additionally control for the interaction between these geographic variables and varia-

tion in the origin composition of student bodies, measured by the fraction of in-state

enrollment.

The Dictionary of Occupational Titles (DOT) and the Occupational Information Net-

work (O*NET) both provide occupation-specific task content, have been widely used to

study worker sorting across occupations (Acemoglu and Autor, 2011, Yamaguchi, 2012,

Deming, 2017). Our task variables are taken from Burning Glass Technologies (BGT),

which were first used by Hershbein and Kahn (2018) to study labor demand adjust-

ments during the Great Recession, and have been used to study the effect of techno-

logical change on earnings dynamics (Deming and Noray, 2020), the consequences of

job loss (Braxton and Taska, 2023), and in explaining regional disparities in earnings

(Atalay, Sotelo and Tannenbaum, 2024). Our dataset enables us to estimate task-based

sorting at a much more granular level, capturing heterogeneity across both firms and

occupations.

To provide insight into the relative importance of sorting into firms versus sort-

ing into occupations, our model also yields an alternative gravity-type specification

that relates the share of graduates from each university employed in a given U.S.

firm—conditional on the same occupation—to the factors emphasized above. This spec-

ification introduces additional controls for university–occupation fixed effects, further

netting out the role of alternative employment options for each university–occupation

pair and exploits residual variation across firms within the same occupation. Com-

paring these estimates with those from the baseline, the evidence suggests that sort-

ing along both two dimensions—firms and occupations—is quantitatively important in
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shaping the overall positive sorting on cognitive tasks.

We show that our estimated results are not contaminated by potential confound-

ing factors in four ways. First, we augment our model with college selectivity criteria,

which proxy for students’ average ability prior to entering college, rather than academic

standards or the quality of education or institution reputation that are captured in col-

lege rankings. Second, we consider the university’s field emphasis in education, the

share of graduates in STEM majors. Third, we use different sources of university rank-

ings or more disaggregated groups. Including these factors, our messages remain the

same as the baseline analysis. Fourth, we show that our results are not contaminated

by university-to-firm network effects. Under common assumptions where networks

are a function of historical university-to-job matching probabilities, we show that ac-

counting for network effects does not alter the model specification but instead requires

only a re-interpretation of the regression coefficients. Empirically, we also control for a

network measure capturing university alumni exposure to specific firms and examine

which sorting channel—task, amenity, or geography—the network primarily operates

through. Our findings indicate that it operates mainly through the geographic channel,

with little effect on sorting by task or amenity.

While students attending universities in large metropolitan areas may benefit from

easier access to high-paying jobs, causally identifying the wage premium due to a uni-

versity’s geographic location is challenging.5 Importantly, our estimated model informs

how the assignment of talent to jobs is shaped by various factors, providing a platform

to quantify how geography shapes the labor market outcomes of fresh graduates from

each university.

Through a counterfactual exercise that shuts down geographic factors, we estimate

the job-matching probabilities and wages that graduates from each university would

have experienced. Geography plays an important role: for universities located in the

Bay Area, geography increases the likelihood of matching to top 5% paid U.S. jobs

by about 2 percentage points (ppts). By contrast, for universities in Midwestern and

Southwestern cities, geography reduces the same likelihood by more than 3 ppts. These

difference amounts to 5 ppts in access to top 5% paid jobs.

We also find that universities in the Bay Area enjoy a geographic premium in an-

nual salaries, which remains sizable even after adjusting for regional price differences.

Notably, this premium is nontrivial when benchmarked against the wage premium as-

sociated with university rankings. Relative to Midwestern and Southwestern cities
5Identification might require random assignment of students to universities and that universities

across cities be identical in training and all other respects.
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that host major universities—such as Lafayette (LA), Ann Arbor (MI), Bloomington

(IN), Lansing (MI), and Columbus (OH)—the Bay Area premium, in both nominal and

real terms, exceeds half of the average premium from attending a Top 200 globally

ranked university and amounts to between one-fifth and one-third of the premium from

attending a Top 20 university.6

Our paper relates to the literature on labor market outcomes across various uni-

versities. Since information on the universities attended is rarely publicly available in

large samples, Chetty, Friedman, Saez, Turner and Yagan (2020) link multiple admin-

istrative datasets to examine how attending elite universities shapes income segrega-

tion and inter-generational mobility. Chetty, Deming and Friedman (2023) show that

attending an Ivy-Plus college instead of the average flagship public university triples

their chances of working in a prestigious firm. Zimmerman (2019) shows that attend-

ing elite universities substantially increases mobility into top-paid jobs and raises in-

come in Chile. We are not aware of any prior study that has examined the geographic

mobility of recent college graduates across a representative set of U.S. universities.

Complementing this literature, we estimate the assignment function of talent to jobs

and provide a model-based quantification that highlights a sizable geographic premium

associated with university location.

The implications of labor mobility on aggregate productivity have received increas-

ing attention in developing countries (Lagakos and Waugh, 2013, Tombe and Zhu, 2019,

Bryan and Morten, 2019). Pellegrina and Sotelo (2021) study how the migration of

farmers to western Brazil shaped regional comparative advantage in agriculture. In

the United States, geographic mobility has been studied in response to the Great Re-

cession (Cadena and Kovak, 2016) and import competition (Bound and Holzer, 2000,

Greenland et al., 2019, Autor et al., 2025), and in determining the aggregate produc-

tivity (Albert and Monras, 2022). We complement the literature to analyze patterns of

geographic mobility across universities of different rankings and locations.

Finally, the literature on worker–firm sorting often relies on the Abowd– Kramarz–

Margolis (AKM) framework (Abowd et al., 1999, Card et al., 2013, Lopes de Melo, 2018,

Song et al., 2019, Bonhomme et al., 2023). By combining multiple datasets, our sample

provides richer information on both the supply and demand sides, allowing us to study

worker–firm sorting in task space and across geographic dimensions within a unified

framework. Our findings provide empirical validation for the theoretical framework of

worker–firm matching (Eeckhout, 2018).
6These premiums are relative to institutions ranked outside the Top 1000.
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The paper is organized as follows. Section 2 briefs the data and presents motivating

facts. Section 3 describes the model. Section 4 discusses the estimation results, and

Section 5 tests potential confounders. Section 6 estimates the geographic premium.

Section 7 concludes.

2 Data and Facts

This section describes our data sources and presents new facts on the job-matching and

spatial sorting of college graduates.

2.1 Data Sources

Our data come from multiple sources, which are briefly described below, with further

details provided in Appendix A.

LinkedIn. Our first data source is purchased from Revelio Labs, which processes

LinkedIn profiles containing detailed résumés for over 52 million users, captured in a

2018 snapshot.7 The dataset provides rich self-reported information on the firms and

job titles individuals have held, the institutions they attended, the degree awarded,

fields of study, and the start and end dates of each job and degree. Some users report

multiple universities for their undergraduate studies, which might involve exchange

programs or institutions where they completed minors. We define the primary univer-

sity as the institution where the individual spent the longest time.

Because we focus on job matching among fresh college graduates, we restrict the

sample to individuals who earned a bachelor’s degree (as their highest degree) between

2016 and 2018, graduated from a U.S. institution, and are currently employed by a

U.S. firm.8 As fresh graduates first enter the job market, they are likely to maintain

accurate and up-to-date information on their LinkedIn profiles. Our objective is to

measure individuals’ first “primary” job immediately after graduation. We use firm and

occupation information from their 2018 job record. For those reporting multiple jobs in

their profile, we select the position in which they had the longest tenure. We exclude

individuals currently working as interns or enrolled in master’s or Ph.D. programs.

Burning Glass Technology. Our second data source is the universe of job postings,
7For our research purpose, we restrict the full sample to individuals with ongoing job experience in

2018.
8We include 2016 graduates to increase the sample size. Since most LinkedIn users report the same

job in both 2017 and 2018, we focus on employment outcomes in 2018.
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which measures task content by occupation and employer.9 We use BGT job posting

data from 2018. Following Spitz-Oener (2006) and Atalay et al. (2020), we apply text

analysis to construct four commonly used task measures from job advertisements: cog-

nitive, social, routine, and manual. For each task, we compute percentile rankings

across all postings and then average them across postings that share the same firm

name and occupation code.10 All task measures are standardized to range between 0

and 1. In Section 4, we further standardize each BGT task variable by its standard

deviation to ease interpretation.

Glassdoor. Firm-occupation-occupation-specific wage information is obtained from

Glassdoor.11 Glassdoor is an online platform where users voluntarily and anonymously

report wages and review employers. Workers are incentivized to contribute through

a “give-to-get” policy, whereby access to information provided by others requires con-

tributing one’s own first (Martellini et al., 2024).

We obtain a snapshot of Glassdoor data collected between September and October

2024, which includes detailed wage information by firm, occupation, location, and years

of experience. To integrate this dataset with our other sources, we match job titles to

Standard Occupational Classification (OCCSOC) occupation codes, firm names to those

in Burning Glass and LinkedIn, and job locations to commuting zones (hereafter, CZ).

We use the entry-level wages (0-3 years of experience), and at each firm, CZ, and two-

digit SOC occupation levels.

In our Glassdoor data, 16% of entry-level wages are reported as exact values, while

84% are reported as intervals. Importantly, since these intervals are generally narrow

among entry-level wages, we choose the midpoint as the wage for each job.12 Finally, we

deflate wages to 2018 dollars using the Consumer Price Index (CPI) from the Bureau

of Labor Statistics.

Amenity Index. Our city amenity measure uses a single index taken from Diamond
9Notably, the BGT data are based on online job postings and are available beginning in 2007. For

earlier periods, see Atalay, Phongthiengtham, Sotelo and Tannenbaum (2020), who measure job tasks
using newspaper postings dating back to 1960.

10Because many postings list multiple possible locations with identical task descriptions, our BGT
measures do not capture variation across locations within the same firm–occupation combination, in
order to maintain consistency.

11In a recent study, Martellini et al. (2024) use an individual-level sample of Glassdoor data to esti-
mate college quality and assess its role in explaining cross-country variation in entrepreneurship and
innovation. By contrast, our data are accessed directly from the public Glassdoor platform and are less
granular, containing wage information at the firm–occupation–experience level.

12For jobs with salaries reported in intervals, we calculate the interval range relative to the midpoint.
On average, this ratio is 11%, with a maximum of 20%, indicating that reported entry-level wages fall
within a relatively narrow range.
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(2016). The measure is based on a collection of rich amenity variables from six different

categories: the retail environment, transportation infrastructure, crime, environmen-

tal quality, school quality, and local skill demand. The single amenity index is calcu-

lated as the first component of the principal component analysis. We convert it into a

percentile ranking, normalized to range from 0 to 1.

University Rankings. We group universities into groups based on the World Univer-

sity Rankings (WUR), which is widely recognized as a proxy-based ranking and has

been recently used in Martellini et al. (2024). The ranking is based on factors such

as academic reputation, employer reputation, faculty-student ratio, and citations per

faculty, with more weight given to the latter two factors. We also use rankings from US

News as an alternative measure.

2.2 Data Processing

We extensively process data from the three online labor market platforms, as detailed

in Appendix A.2. In brief, our work involves four main tasks. First, we standardize em-

ployer names across the three datasets. Second, for LinkedIn and BGT, the Standard

Occupational Classification (OCCSOC) codes are directly available. We use a large

language model (ChatGPT-4o) to map job titles in Glassdoor to the OCCSOC code. In

our analysis, we aggregate the detailed OCCSOC occupations into 22 broad categories

based on their first two-digit codes. Third, for LinkedIn data, we standardize self-

reported university names to align with institutional names in the World University

Rankings and U.S. News. Finally, we process geographic information from LinkedIn

profiles to construct commuting zone codes, identifying both the location of universities

and their place of work.

Putting all together, we restrict the sample to LinkedIn users who: (1) received

their bachelor’s degree (as their highest degree) between 2016 and 2018 from a U.S.

institution ranked in the Top 2000 in WUR; (2) were working in the United States in

2018; (3) have employer names and occupational titles that are clearly identified and

can be matched to BGT data; and (4) have identifiable employer geographic locations.

To improve estimation precision, we further limit the sample to U.S. universities with

at least 100 LinkedIn users.

We also restrict to 266 U.S. universities that are ranked in the WUR.13 We group

universities into four tiers using the WUR: the Top 20 globally ranked (Top 20), those

ranked 21–200 globally (Top 21–200), those ranked 201–1000 globally (Top 201–1000),
13WUR ranks the top 2,000 universities globally. Among them, 348 are U.S. universities.
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and all others (including those ranked outside the Top 1000). In robustness checks, we

also use more detailed grouping.

The sample covers 266 universities, 25492 distinct firms, and a total of 244,632

LinkedIn users.14 A firm appears in our sample if we observe at least one LinkedIn

user employed there.

According to IPEDS, the 266 universities in our study awarded 2.52 million bache-

lor’s degrees (including international students) between 2016 and 2018, implying that

our sample covers approximately 10% of this student population. Because some bach-

elor’s degree recipients do not enter the labor force (e.g., pursue further study, are

unemployed, or leave the U.S.), our sample captures an even larger share of graduates

who enter the U.S. labor force.

2.3 Sample Validation

Since the BGT data have been extensively used and validated in prior studies (Hersh-

bein and Kahn, 2018, Atalay et al., 2024), we focus on validating our LinkedIn and

Glassdoor samples. Below, we briefly describe the six validation exercises we per-

formed, with full details provided in Appendix B.

We validate the LinkedIn data in three ways. First, we assess spatial represen-

tativeness by comparing each CZ’s share of national college-graduate employment be-

tween LinkedIn and the American Community Survey (ACS). Second, we assess oc-

cupational representativeness by comparing employment shares across two-digit SOC

occupations between LinkedIn and the ACS. In both cases, correlations exceed 0.9,

with OLS regression slopes close to one and R2 values above 0.9. Third, we evaluate

the representativeness of graduating class sizes across U.S. universities by comparing

the national share of graduates by university between LinkedIn and IPEDS. These ex-

ercises show that LinkedIn data are broadly representative of the U.S. college-educated

workforce and graduating class sizes.

As a recent study documents that online job postings contain little wage informa-

tion (Batra, Michaud and Mongey, 2023), we conduct extensive validation to show that

Glassdoor wage data provide meaningful information for college graduates. Specifi-

cally, we compare average annual wages from Glassdoor and the ACS across occupa-

tions, commuting zones (CZs), and CZ–occupation pairs. In all cases, we find strong

correlations, indicating that Glassdoor wages capture meaningful variation across re-
14Throughout the paper, we define a firm as the combination of a company name and the location of

its establishment.
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gions and occupations.

2.4 Empirical Facts

Top U.S. universities and high-paying jobs are not clustered in the same locations.

On the one hand, many of the most prestigious universities are located outside ma-

jor metropolitan areas. On the other hand, many metropolitan cities that host large

firms and high-paying jobs have few, if any, elite universities. To compare the geo-

graphic distribution of top U.S. college graduates (supply) with that of high-paying jobs

(demand), Figure 1 plots the relationship between each city’s share of top-paid U.S.

jobs (y-axis) and its share of locally educated bachelor’s degree recipients from top US

universities (x-axis), each expressed as a share of the national total. We use data from

the 2018 American Community Survey (Ruggles et al., 2010) to define top-paid jobs as

those that belong to the top 5% of the income distribution among all college-educated

wage earners. To measure the supply, we use the World University Rankings (WUR) to

define top U.S. universities as those ranked among the Top 20 globally or belonging to

the Ivy League. The number of bachelor’s degree recipients from each top university is

obtained from the IPEDS. The dashed line in the figure represents the 45-degree line.
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Figure 1: Spatial Distribution of Top College Graduates and Top Paid Jobs.

Notes: The y-axis city’s share of top jobs in the United States. We define top jobs as those that

belong to the top 5% of the income distribution among all college-educated wage earners. The

x-axis shows each city’s college graduates as a share of the national total, among universities

ranked in the global Top 20 or belonging to the Ivy League.

Figure 1 shows that most cities are clustered either near the y-axis or the x-axis.

For clarity, we restrict the plot to cities that either account for more than 1% of the
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top U.S. jobs or host at least one top-20 university. On the one hand, cities such as

Arlington (Virginia), Seattle, Dallas, Houston, and Atlanta lie near the y-axis. These

cities host a sizable share of high-paying jobs, but produce few top college graduates.

Similarly, New York City and Newark are located close to the y-axis, reflecting that

they host a relatively large share of top jobs compared with the share of top graduates

produced locally.

On the other hand, several cities near the x-axis—such as Ann Arbor (MI), Cham-

paign (IL), and Ithaca (NY)—are home to prominent universities but offer relatively

fewer high-paying job opportunities. In addition, many cities fall between the 45-

degree line and the x-axis, representing locations that produce a disproportionately

large share of top college graduates while hosting a smaller share of top jobs. Similar

patterns persist when top-paid jobs are defined using the 75th or 90th percentile of the

income distribution (see Appendix Figure C.1).

This geographic separation between the “best jobs” and the “best talents” suggests

that college graduates must move in order to access elite firms and better job opportu-

nities. We now present four new facts on the job search for fresh college graduates.

Fact 1. Fresh graduates are highly mobile across cities, with the majority
moving within the same state or to neighboring states.

Column (1) of Panel A in Table 1 reports the fraction of graduates who remain in

the same CZ as their college. Overall, more than half of graduates leave their college

city for employment, with 47.7% staying and working in the same CZ.

Despite the low retention rate within the city, column (2) shows that 70% of gradu-

ates are employed within the same state. On average, graduates travel 320 miles to se-

cure a job, a distance similar to that between Boston and Philadelphia, or from Phoenix

to San Diego. Compared to the vast distances spanned across the U.S. continent (nearly

3,000 miles from northeast to northwest, and over 3,300 miles from southeast to north-

west), these figures indicate that, on average, graduates tend to work relatively close

to their place of study.

Fact 2. Graduates from higher-ranked universities are more mobile, with the
most notable group being graduates from the Top 20 universities.

Column (1) shows that within-CZ retention is 56.1% for universities outside the

Top 1000 but drops sharply to 37.6% for Top 20. Column (2) shows that within-state

retention is as high as 80% for universities outside the Top 1000, falling to 70% for Top

201–1000 universities, 65.4% for Top 21–200, and only 55.1% for Top 20. Column (3)
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shows that graduates from Top 20 universities travel, on average, 605 miles for jobs,

compared to 380 miles for Top 21–200 universities, 279 miles for Top 201–1000, and

243 miles for universities outside the Top 1000.15

Table 1: Retention Rates by College Rankings

Panel A: Summary Statistics
College (1) (2) (3) (4)

Retention Rate
Commuting Zones

Retention Rate
State

Distance
Traveled (Miles)

Weekly Wages
of Hosting City

All 0.477 0.703 320 1547
Top20 0.376 0.551 605 1733
Top21-200 0.431 0.654 380 1520
Top201-1000 0.475 0.704 279 1489
Top1001-2000 0.561 0.800 243 1623

Panel B: Mobility on Rankings and Wages
(1) (2) (3) (4)

Retention Rate Retention Rate Distance Distance
Top20 -0.124˚˚ -0.111˚˚˚ 263.652˚˚˚ 260.575˚˚˚

(0.057) (0.039) (37.609) (48.866)
Top21-200 -0.075˚ -0.052 94.000˚˚˚ 51.963

(0.039) (0.032) (25.853) (40.353)
Top201-1000 -0.069˚˚ -0.027 27.434 9.886

(0.030) (0.026) (19.858) (31.920)
Log wage 1.423˚˚˚ -414.403˚˚˚

(0.106) (70.108)
In-state Enrollment 0.424˚˚˚ 0.425˚˚˚ -537.340˚˚˚ -520.504˚˚˚

(0.055) (0.042) (36.581) (52.034)
Observations 258 153 258 153
R2 0.57 0.85 0.72 0.78

Notes: In Panel B, the dependent variable is within-CZ retention rate in Columns (1) and (2),

and average distance traveled in Columns (3) and (4). Columns (1) and (3) control for the log

of average wages in the university-hosting city and for state fixed effects, whereas Columns (2)

and (4) include CZ fixed effects.

This pattern persists when we examine the distance traveled by movers.16 Figure 2

shows that, for graduates of lower-ranked universities, more than half relocate within

300 miles, and the vast majority move within 600 miles. In contrast, graduates of the

top 20 universities are far more geographically mobile: 25.7% relocate more than 1,800

miles for a job.

The last column of Panel A reports the average weekly wage in the university-

hosting cities.17 Top 20 universities, on average, are situated in the highest-paying

cities than other groups. Intuitively, local economic opportunities should influence re-

tention rates and mobility, which we analyze next.
15These average distances traveled are estimated using both movers and stayers.
16Movers are defined as graduates who relocate to a different CZ for employment after graduation.
17We compute the average weekly wage using the ACS, restricting the sample to individuals who work

full-time and hold a college degree.
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Figure 2: Distribution of Distance Traveled by University Group, Among Movers

Notes: The plot displays the share of graduates who match to jobs in each distance category,

conditional on movers (graduates who relocate to a different CZ for employment after gradua-

tion). County-to-county distances are obtained from the NBER County Distance Database, and

CZ-to-CZ distances are computed as a population-weighted average.

Fact 3. High-wage cities retain a larger share of their locally educated gradu-
ates than do low-wage cities.

To systematically summarize the mobility patterns, we regress CZ-level retention

rates on three dummy variables—Top 20, Top 21–200, and Top 1000, as well as the log

of average weekly wages of the university-hosting city. Universities outside the Top

1000 serve as the benchmark group.

Next, we use the IPEDS to compute the share of undergraduate students who are

in-state enrollees. Controlling for this variable accounts for the origin composition of

student bodies, thereby addressing potential home bias in location choice (Kennan and

Walker, 2011). In addition, we include state fixed effects to absorb cross-state differ-

ences in employment opportunities for college graduates. Eight out of 266 universities

that are the sole institution (in our sample) within their state are automatically ex-

cluded.

Column (1) reports a coefficient of -0.124 (s.e.= 0.057) on the Top 20 dummy, indi-

cating that graduates from Top 20 universities are 0.124 percentage points (ppts) less

likely to remain in the same city compared with graduates from universities outside the

Top 1000. In addition, the in-state enrollment share also matters for retention rates: a

10 ppts increase in the share of in-state students is associated with a 4.24 ppts higher

retention rate.

The estimated wage coefficient is positive, at 1.423 (s.e. = 0.106), suggesting that
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higher wages increase the likelihood that cities retain locally educated college gradu-

ates. The magnitude of the wage effect on retention rate is large: comparing Boston

(among the top 10 highest-paid US cities) with Pittsburgh (PA), the former has a 34.2

percentage points higher retention rate for their college graduates than the latter.18 In

Column (2), we replace the log wage of the university-hosting CZ and state fixed effects

with CZ fixed effects. The CZ fixed effects capture all unobserved, CZ-specific factors

that influence employment outcomes.19 We find similar results under this specification.

In Columns (3) and (4), the outcome variable is replaced with the distance traveled

between the college city and the job city. Compared to the benchmark group, the Top 20

university graduates travel an additional 264 miles on average to secure employment.

Graduates from Top 21–200 universities travel more than 90 miles farther than the

benchmark group. Column (4), again, reports similar estimates for rank dummies and

log wages when including CZ fixed effects.

Fact 4. There is a mover premium: movers, compared with stayers, tend to re-
locate to access better employment opportunities and higher amenities. The
mover premium is high for universities located in low-wage cities and low for
universities located in high-wage cities.

Using individual-level data, we regress the cognitive, social tasks (BGT), and log

wages (Glassdoor) on a binary variable of mover, which equals one if an individual’s CZ

of work differs from the CZ of his/her university, and zero otherwise. For all regressions,

we control for university fixed effects, and we compare movers and stayers within the

same university.

Panel A of Table 2, Columns (1) and (2), shows that movers tend to obtain jobs

with task requirements 3.0 percentiles higher in cognitive and 2.2 percentiles higher

in social task intensity, compared to stayers. Because occupations or jobs that are

cognitive and social intensive are often the ones that pay higher wages (Deming, 2017,

Atalay et al., 2024), we consider better jobs as those that have high cognitive or social

task requirements. Column (3) shows that movers also tend to land in jobs that pay

significantly higher, about 13.8%, relative to stayers. Column (4) shows that movers

settle in cities with local amenities 7.3 percentiles higher than stayers. The evidence

points to the existence of a compensating differential: migration is indeed costly, and

college graduates tend to move farther to secure better employment opportunities or to
18The value is computed as 1.423ˆp7.52 ´ 7.28q, where 7.52 and 7.28 are the log weekly college wages

for Boston and Pittsburgh (PA), respectively.
19Because we condition on CZ-level fixed effects, we compare universities of different rankings located

within the same CZ, and universities that are the sole institution within their CZ are excluded.
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access high-amenity locations.

Because task variables and wages vary across firms and occupations, we also report

estimates that condition on university and occupation fixed effects. When comparing

movers and stayers from the same university who enter the same occupation but differ-

ent firms, the mover premium remains statistically significant (albeit attenuated) for

social tasks and wages, while becoming imprecisely estimated for cognitive tasks; see

Columns (5)–(7).

Table 2: Job Outcomes of Movers and Stayers

(1) (2) (3) (4) (5) (6) (7)
Cognitive Social Log Wages Amenity Cognitive Social Log Wages

Panel A: The Mover Premium
Movers 0.030˚˚˚ 0.022˚˚˚ 0.138˚˚˚ 0.073˚˚˚ 0.008 0.011˚˚˚ 0.078˚˚˚

(0.010) (0.007) (0.021) (0.006) (0.007) (0.003) (0.014)
Occupation FE ✓ ✓ ✓
Observations 244,632 244,632 244,552 243,195 244,632 244,632 244,552
R2 0.07 0.03 0.13 0.42 0.29 0.20 0.56

Panel B: The Mover Premium by University Hosting Cities
Movers 0.032˚˚˚ 0.024˚˚˚ 0.147˚˚˚ 0.086˚˚˚ 0.009 0.013˚˚˚ 0.085˚˚˚

(0.011) (0.008) (0.023) (0.009) (0.007) (0.004) (0.015)
Movers ˆ lnWHost

g -0.090˚˚ -0.097˚˚˚ -0.417˚˚˚ -0.558˚˚˚ -0.051˚˚ -0.066˚˚˚ -0.310˚˚˚

(0.036) (0.018) (0.064) (0.019) (0.025) (0.015) (0.054)
Occupation FE ✓ ✓ ✓
Observations 244,632 244,632 244,552 243,195 244,632 244,632 244,552
R2 0.07 0.03 0.14 0.43 0.29 0.20 0.56

Notes: All regressions are estimated using individual LinkedIn users and include controls for

university fixed effects. Columns (1) to (4) include university fixed effects. Columns (5) to (7)

include university and occupation fixed effects. The dependent variable in column (3) is log

wages, measured using Glassdoor data for the firm–occupation in which a LinkedIn user is

employed. lnWHost
g is the demeaned log weekly wage in university-hosting cities obtained from

the ACS. Standard errors in parentheses are clustered at the firm-occupation level.

Mover premium depends on job opportunities available in university-hosting cities.

We augment the model by including an interaction between the mover dummy and

lnWHost
g , the demeaned log weekly wage in university-hosting cities obtained from the

ACS.20 We find negative and precisely estimated interaction coefficients that are both

sizable and economically meaningful across all columns. For example, a 0.1 log-point

lower in the hosting city’s log wage increases the mover premium of the matched job by

0.9 percentiles in cognitive tasks (column 1), 0.97 percentiles in social tasks (column

2), and 4.17% in wages (column 3).

Motivated by these documented patterns, we next estimate a model of how gradu-
20We demean the log wage to ease interpretation of the main effect: in Panel B, the coefficient on the

mover dummy captures the mover premium for cities at the sample mean of the log wage.
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ates sort into firms, cities, and occupations, enabling a comprehensive assessment of

the relative importance of multiple factors in shaping labor market sorting.

3 The Model

We present a model where college graduates decide which firm (indexed by f ) and occu-

pation (indexed by o) to pursue, taking into account wages, search costs, the amenities

of the city (c) where the job is located, and individual tastes. We group workers by their

university (indexed by g). Again, a firm refers to the combination of an employer name

and the location of its establishment. Since the firm index f and the university index g

already nest information in the location information for jobs and schools, respectively,

we omit the city subscript c when its exclusion does not create confusion.21

3.1 Preference

For individuals who attend university g, their utility of living and working in city c,

firm f and occupation o is

U i
fo “

´ Cg
fo

1 ´ κ

¯1´κ´Hg
fo

κ

¯κ

agcτ
g
foε

i
fo. (1)

In Equation (1), Cg
fo represents consumption of tradable goods, and Hg

fo represents con-

sumption of non-tradable goods. κ denotes the expenditure share allocated to non-

tradables. agc captures the utility obtained from the local amenity in city c’s felt by group

g. τ gfo is the costs incurred during job searching, specific to university g graduates to

firm f and occupation o. To ease interpretation, we model search cost as an iceberg cost

(or take-home utility) with a higher value indicating lower costs. εifo is idiosyncratic

preferences for job tf, ou which allows workers to have heterogeneous preferences over

the work environments of different potential employers and occupations.

Individuals face the following budget constraints PcC
g
fo ` RcH

g
fo ď W g

fo, where Pc

is the price for tradables and Rc is the rent for non-tradables. W g
fo is the wage that

g-workers would earn from job tf, ou. Utility optimization implies that the demand is

Cg
fo “ p1 ´ κq

W g
fo

Pc

, Hg
fo “ κ

W g
fo

Rc

. (2)

21In our model, students from the same university differ only in idiosyncratic tastes, εifo. We analyze
sorting across universities of different rankings, while remaining silent on heterogeneity within each
university.

17



We can then obtain the indirect utility as

V i
fo “

W g
fo

pc
τ gfoa

g
cε

i
fo, (3)

where pc “ P 1´κ
c Rκ

c is the price index in city c.

3.2 Labor Allocation

For tractability, we assume εifo is drawn from i.i.d. Fréchet distribution with shape

parameter θ and scale parameter 1. In equilibrium, the fraction of g-graduates who

choose firm f and o can be expressed as

Πg
fo “

´

W g
foa

g
cτ

g
fo

L

pc

¯θ

ř

f 1o1

´

W g
f 1o1a

g
c1τ

g
f 1o1

L

pc1

¯θ
. (4)

By applying the Law of Conditional Probability, we can also derive the fraction of g-

graduates who choose firm f , conditional on choosing occupation o as

Πg
f |o “

´

W g
foa

g
cτ

g
fo

L

pc

¯θ

ř

f 1

´

W g
f 1o1a

g
c1τ

g
f 1o

L

pc1

¯θ
. (5)

3.3 Estimating Equations

We assume that the wage has two components as follows:

W g
fo “ ωfo ˆ T g

fo, (6)

where ωfo is wage per efficiency unit paid at firm f and occupation o, and T g
fo is labor

productivity (or efficiency units) for g-group if working at f and o. We also consider

search cost τ gfo consist of two parts as follows

τ gfo “ τ g,Geo
c ˆ τ g,UBV

fo . (7)

Here, τ g,Geo
c is the component related to moving costs, which we will measure as a func-

tion of geographic variables. τ g,UBV
fo is the unobserved component, highlighted using

superscript UBV.

Sorting into Jobs. We can use Equations (4), (6), and (7) to derive a log-linear estima-
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tion equation for the determination of the log share of g-group who choose firm f and

occupation o,

lnΠg
fo “ λg ` λfo ` θ lnT g

fo ` θ ln agc ` θ ln τ g,Geo
c ` θ ln τ g,UBV

fo . (8)

The term λg “ ´ ln
ř

f 1o1

`

W g
f 1o1a

g
f 1τ

g
f 1o1

L

pc1

˘θ is group fixed effects that capture overall

employment opportunities for g-workers. This term will also absorb any reputation

effects that are specific to university g and common across firms and occupations.

The term λfo “ θ lnωfo´θ ln pc is the firm-occupation-specific fixed effects. It absorbs

the wage per efficiency unit. Since index f nests city c, it also absorbs the local price

index, pc. θ ln τ g,UBV
fo will be treated as the structural residual in the estimation.

Sorting across firms conditional on occupation. Equation (5) can be used to de-

rive a log-linear estimating equation for the determination of the log share of g-group

who choose firm f , conditional on occupation o,

lnΠg
f |o “ λgo ` λfo ` θ lnT g

fo ` θ ln agc ` θ ln τ g,Geo
c ` θ ln τ g,UBV

fo . (9)

The only difference from Equation (8) is λgo “ ´θ ln
ř

f 1

`

W g
f 1o1a

g
f 1τ

g
f 1o

L

pc1

˘

, which is a

group-occupation fixed effect absorbing the average employment opportunities condi-

tional on a specific group and an occupation. Note that this term will also absorb any

reputation effects that are specific to university g and occupation o, but common across

firms.

3.4 Parameterization

To estimate the model, we impose parametric assumptions on lnT g
fo, ln agc , and ln τ gc .

Labor Productivity (Task Complementarity). Note that T g
fo is specific to each uni-

versity, firm, and occupation, and is high-dimensional. Our unique dataset enables

us to reduce this dimensionality. Specifically, we assume university-job-specific labor

productivity as follows:

lnT g
fo “

J
ÿ

j“1

K
ÿ

k“1

βBGT
jk Xg

j Y
BGT
fok , (10)

where index j refers to the four university tier groups. Xg “ tXg
1 , ..., X

g
4u is therefore a

set of binary variables representing these groups. Y BGT
fo “ tY BGT

fo1 , ..., Y BGT
foK u represents

the BGT task requirements that are specific to firm f and occupation o. The index k

refers to the type of tasks, which include cognitive, social, routine, and manual tasks.
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βBGT
jk governs the sign and strength of sorting. Taking cognitive tasks as an example

and suppose g1 is the group of better-ranked universities, and g4 is the group of lowest-

ranked universities. βBGT
1k ą βBGT

2k ą βBGT
3k ą βBGT

4k ą 0 implies that graduates from

better-ranked universities are more likely to work in cognitive-intensive jobs

B lnΠg1
fo

BY BGT
fo,cog

ą
B lnΠg2

fo

BY BGT
fo,cog

ą
B lnΠg3

fo

BY BGT
fo,cog

ą
B lnΠg4

fo

BY BGT
fo,cog

.22 (11)

The above inequalities extend the positive sorting defined in Costinot and Vogel (2010)

to the probabilistic version that satisfies the Monotone Likelihood Ratio Property as

studied in Costinot and Vogel (2015).

In Equation (10), βBGT
j,cog ˆ Y BGT

fo,cog can be considered as the marginal productivity

for tier-j graduates of performing cognitive task in firm f and occupation o. When

βBGT
1k ą βBGT

2k ą βBGT
3k ą βBGT

4k ą 0, it then implies that labor productivity increases as

cognitive task requirements are higher, and increases more for graduates from better-

ranked universities. The specification of Equation (10) is in line with micro-foundation

task complementarity (or supermodular property), giving better-ranked universities

the “productivity premium” to work in better firms, and is the source generating posi-

tive assortive matching (Becker, 1973, Eeckhout, 2018).23

Amenity. We measure the group-specific utility derived from local amenities as

ln agc “

J
ÿ

j“1

βAmen
j Xg

j Y
Amen
c , (12)

where Y Amen
c is the measure of local amenity. βAmen

j captures the strength of sorting for

tier-j universities on amenities, with a larger positive value corresponding to stronger

sorting. Similarly, βAmen
1 ą βAmen

2 ą βAmen
3 ą βAmen

4 implies that graduates from better-

ranked universities sort in cities with better amenities.

Mobility costs. We measure group-city-specific mobility costs using the interaction

between Xg and geographic variables, Y Geo
fk . Specifically, we assume

ln τ g,Geo
c “

J
ÿ

j“1

K
ÿ

k“1

βGeo
jk Xg

j Y
Geo
fk , (13)

22The results hold because
B lnΠ

gj
fo

BY BGT
fo,cog

“ θβBGT
j,cog where θ is constant across all groups.

23Since we include interactive terms for four types of tasks, our estimation will reveal task comple-
mentarity for each of the four dimensions.

20



where Y Geo
fk include three variables, the logarithm of the geographic distance between

university and firm, a dummy variable CZfg that equals one if university g and the firm

f are in the same city; and a dummy Statefg that equals one if the university and firm

are in the same state. These dummies can pick up any non-linear features between

costs and log distance. These interactions pick up potential differential impacts of

geography on job choice across groups.

Similarly, βGeo
jk captures the strength of sorting for tier-j universities on geographic

factors. For example, parameter values of βGeo
1,dis ą βGeo

j,dis, j “ 2, 3, 4 would capture the

fact that graduates from Top 20 universities are more likely to match to jobs that are

further away than other groups.

4 The Estimation Results

We group universities into four tiers as in Section 2, covering 18 U.S. universities are

ranked among the top 20 globally or in the Ivy League (Top 20), 44 universities are

ranked between 21 and 200 globally (Top 21-200), which are typically the best univer-

sities within each state, 115 U.S. universities are ranked between Top 201 and 1000

(Top 201-1000), and 89 universities from Top 1000 and 2000 (outside Top 1000).24 Our

estimation includes three dummy variables for Top 20, Top 21-200, and Top 201-1000,

with universities outside Top 1000 considered as the benchmark group.

In estimating Equations (8) and (9), our sample is formed by a combination of 266

universities, 25492 firms, and 22 occupations that have non-zero matches.

4.1 Task Complementarity

We begin by estimating Equation (8) as our baseline model. We first estimate an OLS

regression for the interactive coefficients between our four BGT task variables (cogni-

tive, social, routine, and manual) with rank dummies (Top 20, Top 21-200, and Top

201-1000). To ease interpretation, we further standardize each BGT task variable by

its standard deviation.25

Following Equation (8), we control for the group fixed effects, λg, and the firm-

occupation fixed effects, λfo. Since the inclusion of firm-occupation fixed effects absorbs

the main effects of BGT task variables, only the interaction effects are included in the
24Top 20 universities include Harvard, MIT, Stanford, Columbia, Princeton, UC Berkeley, Penn,

Chicago, Yale, Cornell, Northwestern, UCLA, Michigan, Johns Hopkins, UIUC, Duke, Dartmouth, and
Brown.

25The variables in Table 2 are expressed as percentiles, ranging from 0 to 1. In this section, the BGT
task variable is further standardized to have a standard deviation of one.
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regression. Column (1) in Table 3 reports the coefficients from the OLS regression of

lnΠg
fo on the interactive coefficients. We find positive and precisely estimated interac-

tive coefficients for cognitive tasks, suggesting positive sorting of university ranking

into cognitive tasks. Specifically, the cognitive-Top 20 coefficient equals 0.199 (s.e. =

0.043), and the cognitive-Top 21-200 coefficient remains positive, although it decreases

to 0.073 (s.e. = 0.020), and further decreases to 0.029 (s.e. = 0.015) for cognitive-Top

1000.

The estimates indicate that, holding other factors constant, a standard deviation in-

crease in cognitive task requirements raises the likelihood of working as a computer sci-

entist at Google rather than at Sanmina Corporation (an American electronics manu-

facturing services provider), graduates from Top 20 universities have a 0.199 log points

or about 19.9% more likely to match to the cognitive-intensive job (25.6% of a standard

deviation of lnΠg
fo), relative to the benchmark group.26 The result shows a 0.073 higher

in log points for graduates from Top 21-200, and a 0.029 higher than the benchmark

group.

Additionally, we observe small, negative, but mostly imprecisely estimated coeffi-

cients for the interactions with routine and manual tasks, indicating little systematic

sorting into these tasks across university rankings among college graduates. The in-

teraction terms between social tasks and Top 20 is 0.065 and statistically significant at

90% confidence.

4.2 Local Amenities

We augment our model to estimate the effects of the city’s amenities in determining

job matching. To ease interpretation, we further standardize the variable to have a

unit standard deviation. The amenity index is city-specific and does not vary across

firms that are situated in the same city. We include interaction terms between the

amenity and rank dummies. Again, the main effect of amenities is again absorbed by

the firm–occupation fixed effect.

Column (2) in Table 3 reports a sizable interactive coefficient equal to 0.091 (s.e. =

0.036) for amenity-Top 20. For example, consider Detroit, MI, which sits at the 25th

percentile in terms of amenities among all U.S. cities, and Seattle, which ranks at

the 99th percentile in amenities. Holding job characteristics constant, graduates from

Top 20 universities are 6.8% more likely to choose a job in Seattle than in Detroit,
26The outcome variable, lnΠg

fo, has a standard deviation of 0.778. The 25.6% is computed as the ratio
between 0.199 and 0.778.
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relative to graduates from universities outside Top 1000.27. These results also indicate

positive sorting on amenities among graduates from Top 20 universities. Relative to the

benchmark group, we find no pattern in differential sorting on amenity for universities

in Top 21-200, and a small negative coefficient for universities in Top 201-1000.

Our estimated results for positive sorting into cognitive tasks remain robust with

the inclusion of these amenity interactions, although the estimates are slightly smaller

in magnitude.

4.3 Geographic Factors

Next, we estimate the extent to which geographic proximity determines job matching

and sorting. We augment our model by incorporating the interaction of ranking dum-

mies with three geographic variables: the logarithm of the geographic distance between

a university and the firm location, a dummy variable CZfg that equals one if university

g and firm f are in the same city; a dummy Statefg that equals one if university g and

firm f are in the same state.

Column (3) of Table 3 reports the coefficient estimates of OLS regression with ge-

ography variables included. The coefficients for log distance and its interaction terms

are identified from out-of-state movers. We see a negative and statistically significant

coefficient for -0.067 (s.e. = 0.011) for log distance, indicating that a log point increase

in geographic distance reduces job matching probability by a 0.067 log point for movers

graduate from outside the Top 1000 universities. The interaction terms between log

distance and tier dummies pick up any differential effects of how geographic distance

affects job matching relative to the baseline group. Importantly, we find a sizable and

positive coefficient for the interaction of log distance and Top 20, equaling to 0.061

(s.e. = 0.024). The interaction coefficients with Top21-200 and Top 1000 are small and

statistically insignificant.

These interaction coefficients show that, among movers, distance has no effect on

job matching for Top 20 graduates but has notable effects for graduates from all other

tiers. To interpret this using a concrete example, it means that graduates from Harvard

and Stanford (both Top 20) are equally likely to secure a job in New York City, despite

Boston’s geographic proximity to New York. In contrast, distance matters significantly

for graduates outside the Top 20 universities. For example, those who studied in Boston

(e.g., Boston College) are 18.2% more likely to obtain a job in New York City than those

who studied in the Bay Area (e.g., UC Davis).28

27We estimate the value as 0.091 ˆ p0.99 ´ 0.25q “ 6.8%, using our preferred estimates in Column (4)
28We estimate the value as ´0.067 ˆ plnp2557q ´ lnp171qq “ ´0.182, where the distances between the
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Unsurprisingly, we find positive, sizable, and statistically significant coefficients for

CZfg and Statefg: these coefficients pick up the fact that college graduates are more

than proportional to retain in university city or state.29 The estimates indicate that for

universities outside top 1000, their graduates have a 44.8% higher share or are more

likely to find a job in the same city of their alma mater, relative to other cities, holding

other factors the same; and have a 8.6% higher share or are more likely to find a job

within the state relative to other states.

Column (3) also reports positive and precisely estimated interaction effects for CZ

ˆ Top 21–200, State ˆ Top 20, and State ˆ Top 21-200. These positive interactive

coefficients may capture two mechanisms. The first is related to unobserved economic

factors: how graduates from each tier of universities capitalize on job opportunities

within the CZ or state of their university’s location, relative to the benchmark group.

The second is preferences: students from institutions of different rankings may exhibit

varying tendencies to remain near their university’s city or state.

4.4 Composition of the Student Body

Likewise, the home bias studied in migration literature, students may also prefer to

remain close to their hometown after graduation. This suggests that universities with

a higher fraction of in-state students should exhibit higher in-state retention rates. To

potentially isolate the preference factor arising from the difference in the composition

of their student bodies, we augment six additional interaction terms between three ge-

ographic variables (log distance, CZ dummy, and state dummy) and two institutional

characteristics: a dummy for public universities and the share of in-state student en-

rollment. These shares of in-state enrollment vary widely across institutions, ranging

from less than 10% at elite private institutions such as Columbia, MIT, and Yale, to

more than 90% at public universities such as Texas A&M University and the Univer-

sity of California, Riverside.

Column (4) of Table 3 reports a precisely estimated coefficient of 0.234 (s.e. = 0.234)

for the CZ–public interaction and 0.292 (s.e. = 0.117) for the interaction of state dummy

and in-state enrollment share. These estimates validate the home-bias hypothesis,

indicating a stronger local attachment for universities with a high share of in-state

students.

two city pairs are 2,557 and 171 miles.
29Note that although only 47.7% of college graduates stay in their university city after graduation, the

share is much higher than the city’s employment share in the national total.
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Figure 3: Summary for All Estimated Interactive Coefficients of Equation (8)

Notes: The coefficients are based on column (4) of Table 3. Darker blue colors indicate positive

and statistically significant estimates; small or statistically insignificant estimates are plotted

in light blue. Reported values are coefficients with standard errors in parentheses.

Conditional on these interactions, we find statistically insignificant estimates for

rank-CZ interactive coefficients. The coefficients for the state–Top 20 and state–Top

21–200 interaction terms remain positive and statistically significant. Importantly,

these interactive coefficients do not contradict the pattern of within-state retention

rates documented in Table 1. The variation we explore here already nets out sort-

ing by observables (tasks and amenities, the origin composition of universities, and

firm–occupation-specific wages). Thus, the positive state–Top 20 and state–Top 21–200

interaction coefficients likely capture unobserved economic benefits and amenities, which

on average are greater in states that host higher-ranked universities (e.g., California,

New York, Massachusetts), and to which top-university graduates are closely proxi-

mate.

Students enrolled in public and private universities differ systematically in family

income background (Chetty et al., 2020), and such differences may shape labor market

outcomes. To account for this possibility, we augment the model with four interaction

terms between the BGT task measures (cognitive, social, routine, and manual) and a

public-university dummy. Because our regression already controls for university fixed

effects and ranking-related interactions, these public–task interaction terms capture

differential sorting between public and private universities within the same ranking

tier—likely reflecting differences in family background. If students from higher-income

families are more likely to obtain better jobs, we would expect negative coefficients on
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the cognitive–public or social–public interactions. Column (5), however, shows that

none of these additional controls matter. Importantly, the coefficient estimates remain

nearly identical with or without these controls (columns 4 vs. 5). In a recent study,

Chetty et al. (2023) find that the factors giving children from high-income families an

admissions advantage are uncorrelated with post-college outcomes. Our findings are

in line with theirs.

To summarize the coefficient estimates with the full set of controls, Figure 3 dis-

plays the university ranking-related interaction coefficients based on the preferred

specification reported in Column (4). Darker blue colors indicate positive and statis-

tically significant estimates; small or statistically insignificant estimates are plotted in

light blue. Reported values are coefficients with standard errors in parentheses.

The previously highlighted interaction coefficients change only modestly but remain

statistically significant. For example, we estimate a cognitive–Top 20 coefficient of 0.17

(s.e. = 0.04), an amenity–Top 20 coefficient of 0.18 (s.e. = 0.03), a distance–Top 20

coefficient of 0.07 (s.e. = 0.03), and a distance coefficient of –0.05 (s.e. = 0.02).

4.5 Positive Sorting into Firms or Occupations?

Unlike the DOT or O*NET data, the BGT task requirements vary across both firms and

occupations, the positive sorting in cognitive tasks that we estimate may reflect two

distinct channels: (1) firm sorting—graduates from higher-ranked universities tend

to work in firms with greater cognitive task requirements; and (2) occupational sort-

ing—graduates from higher-ranked universities tend to enter more cognitively inten-

sive occupations. This section examines the relative importance of these two channels

in driving the observed positive sorting.

Previous literature has analyzed sorting into occupations using O*NET data (Dem-

ing, 2017, Burstein et al., 2019) and sorting into firms using the AKM (1999) approach

and employer–employee matched data (Card et al., 2013, Lopes de Melo, 2018, Song

et al., 2019, Bonhomme et al., 2023). Our approach estimates sorting into both firms

and occupations within a unified framework, allowing us to shed light on the relative

strength of firm versus occupation dimensions.

We then estimate Equation (9), in which the outcome variable is worker sorting into

firms conditional on occupation, which requires controlling for university-occupation

and firm-occupation fixed effects. Since the university-occupation fixed effects absorb

the aggregate occupational employment opportunities specific to a university, the co-

efficients for the rank-task interaction terms now characterize the strength of sorting
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across firms, holding the same occupation.

For comparison, Figure 4 displays the university ranking–related interaction coef-

ficients. The complete sets of coefficients are reported in Table 4 with different specifi-

cations. Because university-occupation pairs that are only observed in one firm would

not contribute to identification, the sample size differs slightly from the baseline. The

estimates are notably smaller. As cognitive task requirements increase by one stan-

dard deviation, graduates from Top 20 universities are 9% more likely to work in a

cognitively intensive firm relative to the benchmark group. Compared to Figure 3, the

estimates suggest that sorting into firms accounts for about 0.09{0.17 “ 52%, or more

than half, of the overall sorting into jobs (firms and occupations combined). The in-

teraction coefficients for Cognitive ˆ Top 21–200 and Cognitive ˆ Top 201–1000 also

decline, falling to roughly half of the corresponding estimates in Table 3. Positive sort-

ing into both firms and occupations is quantitatively important in shaping the overall

positive sorting on cognitive tasks.30
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Figure 4: Summary for All Estimated Interactive Coefficients of Equation (9)

Notes: The coefficients are based on column (4) of Table 4. Darker blue colors indicate positive

and statistically significant estimates; small or statistically insignificant estimates are plotted

in light blue. Reported values are coefficients with standard errors in parentheses.

5 Sorting on Other Mechanisms

This section tests several potential confounding mechanisms that might influence our

findings.
30In addition, the interaction coefficients related to geography and amenities are similar between the

estimates of the two figures. The results are expected, since spatial variation is captured in our definition
of a firm rather than in occupation.
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5.1 Admission Selectivity

The sorting we have found based on university ranking can be a byproduct of two pri-

mary factors: the effect of attending a specific university and the selection—students

admitted into better universities on average might have higher abilities who might per-

form better regardless of the universities they attend. This section provides evidence

that sheds light on the relative importance of the two factors.

To this end, we use Barron’s Profiles of American universities (2017 edition), which

classifies universities into six tiers based on SAT/ACT scores and other admission re-

quirements such as high school transcripts and class rank (Barron’s Educational Se-

ries, 2017) (see Table C.1). Unlike the WUR or U.S. News rankings that we use else-

where, these six categories assess the selectivity of college admissions and serve as

proxies for students’ ability prior to entering college, rather than providing ratings

based on academic standards, educational quality, or institutional reputation.

Importantly, the selectivity criterion does not align with the WUR rankings. For

example, UC Berkeley (ranked 8th in WUR), Tulane University (407th in WUR), and

Davidson College (1866th in WUR) are all classified among the most selective univer-

sities. To increase precision in the estimation, we aggregate the admission criteria

into four groups: most selective, highly and very selective, selective, and less and non-

selective.

Column (2) of Table 5 augments the baseline model with interaction between the se-

lectivity dummies and Yfok, where Yfok includes the three sets of variables (BGT tasks,

amenities, and geographical variables). In comparison, Column (1) reports the base-

line estimates. As shown in Column (2), there is no evidence that suggests labor mar-

ket sorting based on the college selectivity; university ranking and related interaction

terms are also included. Importantly, we see only modest changes in the ranking-

related interactive coefficients, compared to the baseline.

We find little evidence of positive sorting into cognitive jobs based on differential

selection of college admissions. Rather, they reflect systematic differences associated

with universities’ training, reputation, and educational quality that shape the career

outcomes of their graduates.

5.2 STEM vs. Non-STEM Majors

Graduates who majored in fields such as STEM and quantitative disciplines are known

to be more likely to obtain high-paid jobs (Deming and Noray, 2020). To examine
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whether our result is driven by variation in major composition across institutions, we

augment the model with interaction terms between the share of graduates in STEM

majors and Yfok (BGT tasks, amenities, and geographical variables). The share of

STEM majors for each university is calculated from our LinkedIn data, where STEM

majors include one of the following broad fields: Science, Technology, Engineering, or

Mathematics.

In Column (3) of Table 5, we find a sizable and positive coefficient for the cogni-

tive–STEM interaction, equal to 0.224 (s.e. = 0.067), and a negative coefficient for the

social–STEM interaction, -0.14 (s.e. = 0.066). These results suggest that universities

with a stronger STEM orientation tend to place their graduates in more cognitively in-

tensive but less socially intensive jobs. Interestingly, we also find positive and precisely

estimated coefficients for the distance-STEM and amenity-STEM interactions, suggest-

ing that STEM graduates are more geographically mobile than non-STEM graduates

and are more likely to relocate to cities with better amenities.

Importantly, while the estimates underscore the role of major composition in shap-

ing job outcomes, the positive sorting on cognitive-ranking related interactive coeffi-

cients are similar (some fall modestly) and remain statistically significant when major

composition is considered.

5.3 University-to-Firm Network

The literature has documented that migration networks not only improve the likelihood

of job matching but also enhance job outcomes through referrals (Munshi, 2003). Our

dataset allows us to measure the university-to-firm network. This section provides

evidence, from two aspects, that our estimated results hold even when university-to-

firm network effects are considered.

A Theoretical Re-Interpretation. First, we show that by incorporating network

effects into the model under a certain structure, one can derive an estimating equa-

tion isomorphic to our baseline Equation (8). Specifically, suppose that unobserved job

search costs are related to the university-to-job (firm and occupation) matching pattern

in the previous period. In particular, we assume that lnΠg
fot follows an ARp1q process

driven by the unobserved search cost component, that is,

ln τ g,UBV
fo,t “ ρ lnΠg

fo,t´1 ` εfo,t, ρ P p0, 1q, (14)

where Πg
fo,t´1 is the share of g-graduates who work in firm f and o in the past or that
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of earlier graduates (alumni). The parameter ρ captures the extent to which the job

matching of alumni influences current job search costs. The term εfo,t represents white

noise—factors unrelated to lnΠg
fo,t´1 but affecting job search costs ln τ g,UBV

fo,t .

In the data, there is a strong persistence pattern of university-to-firm job matches

(see Appendix Figure C.2). The pattern is similar to the well-documented literature on

the immigrant enclave, where studies have documented that for US immigrants from

a particular origin country, their location settlement (Card, 2001) and occupational

choices (Hanson and Liu, 2016) tend to persist over time.

Assuming T g
fo, agc , and ln τ gc are all time invariant, we can substitute Equation (14)

into (8), recursively, to obtain

lnΠg
fo,t “ λg ` λfo ` rθ lnT g

fo ` rθ ln agc ` rθ ln τ g,Geo
c ` θ

t
ÿ

m“0

ρmεfo,t´m, (15)

where rθ “ θ
1´ρ

is a function of the job-matching elasticity to productivity, θ, and the

path dependence of university-specific job matching, 1 ´ ρ. Equation (15) is therefore

isomorphic to our baseline equation, differing only in the interpretation of the reduced-

form parameter and the structural residuals.

Equation (15) further implies that, as long as idiosyncratic shocks to job matching

at any time t, εfo,t´m, are independent of the observed controls, the OLS estimate of the

reduced-form parameter is unlikely to suffer from the omitted variable bias. The main

difference lies in the interpretation of the coefficients.

Empirical Results. The second piece of evidence we provide is empirical. Using the

LinkedIn dataset, we can control firm exposure to alumni from the university g as

Networkg
f “

Lg,alumni
f

Lf

, (16)

capturing the share of firm f ’s current employees that graduated from g before 2014

(we refer to as alumni), Lg,alumni
f , relative to Lf , the current employment size of firm f .

Both Lf and Lg,alumni
f are estimated from the LinkedIn data.

Since unobserved factors that lead to a job match of alumni might also promote

current graduates, we do not claim any causal estimates for the impact of alumni net-

works on job matching. The empirical exercise below aims to shed light on which of the

sorting channels we have estimated so far—task, amenity, or geography—the network

primarily operates through.
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Column (4) of Table 5 augments the model with the network measure and shows

that the university-to-firm network is a strong predictor of employment outcomes, with

a coefficient of 1.675 (s.e. = 0.048), indicating that a one–standard deviation increase in

network exposure is associated with a 167.5% higher likelihood of graduates working

at that firm.

Despite the sizable network coefficient, the cognitive- and amenity-related interac-

tion coefficients remain statistically significant, though somewhat reduced in magni-

tude. For example, the coefficient on Cognitive × Top 20 declines from 0.147 to 0.119,

while the coefficient on Cognitive × Top 21–200 decreases from 0.071 to 0.047.

With this network control, the largest changes occur in the interaction terms involv-

ing geographic variables. This pattern suggests that the university-to-firm network

operates primarily through geographic channels.

5.4 Other Robustness Checks

Using Disaggregated Groupings. Our baseline estimation divides the universities

into four groups. We show that the results remain similar when using more disaggre-

gated groupings. Specifically, we split the Top 21–200 category into two subgroups:

universities ranked 21–100 (labeled Top 21–100) and those ranked 101–200 (labeled

Top 101–200). Likewise, we split the Top 201–1000 category into two subgroups: uni-

versities ranked 201–500 (labeled Top 201–500) and those ranked 501–1000 (labeled

Top 501–1000). Table 6 reports the estimated coefficients, showing that most inter-

action terms are similar across the subgroups within each broader category. These

findings suggest that using broader groupings, as in the baseline estimation, does not

obscure substantial heterogeneity in the sorting behavior.

U.S. News Rankings. While our baseline estimates rely on the WUR rankings, we

find similar results when using the U.S. News rankings. Unlike WUR, which covers

the Top 2000 universities globally, U.S. News provides rankings only for the Top 1000.

For U.S. universities that appear in both sources, the correlation between the two mea-

sures is 0.862. In the estimation, we classify U.S. universities into three groups: Top

20, Top 21–200, and Top 201–1000 (the benchmark group). As reported in Table 7,

estimates based on U.S. News rankings are similar in magnitude and lead to the same

conclusions.
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6 Geography and Labor Market Outcomes

Our model estimates the assignment of talent to jobs as a function of university rank-

ing, job characteristics, amenities, and geography. In this section, we use the estimated

model to quantify how geography shapes the labor market outcomes of fresh graduates.

6.1 Counterfactual Job Matching Probability

We first use the estimated model to compute the model-based benchmark probabilities

as

Πg,Benchmark
fo “

exp pλfoq
`

T g
foa

g
cτ

g,Geo
c τ g,UBV

fo

˘θ

ř

f 1o1 exp pλf 1o1q
`

T g
f 1o1a

g
c1τ

g,Geo
c1 τ g,UBV

f 1o1

˘θ
, (17)

where each component is estimated based on our preferred specification, reported in

Column (4) of Table 3. Specifically, λfo is the estimated firm-occupation fixed effects,

and exp pλfoq measures pωfo

L

pcq
θ. T g

fo, agc , and τ g,Geo
c are estimated as

T g
fo “ exp

˜

J
ÿ

j“1

K
ÿ

k“1

β̂BGT
jk Xg

j Y
BGT
fok

¸

, agc “ exp

˜

J
ÿ

j“1

β̂Amen
j Xg

j Y
Amen
c

¸

,

τ g,Geo
c “ exp

˜

J
ÿ

j“1

K
ÿ

k“1

β̂Geo
jk Xg

j Y
Geo
fk `

J
ÿ

j“1

K
ÿ

k“1

γ̂Geo
jk Cg

jY
Geo
fk

¸

.

(18)

β̂BGT
jk , β̂Amen

j , β̂Geo
jk , and γ̂Geo

jk denote the estimated coefficients. Cg
j includes two variables

of university characteristics: whether g is a public university, and the fraction of in-

state student enrollment.

In computing T g
fo, agc , and τ g,Geo

c , we rely on coefficients that are statistically signifi-

cant at the 95% confidence level, setting statistically insignificant parameters to zero.

τ g,UBV
fo is obtained as the exponent of the regression residuals. Since the estimated

model has an R2 of 0.75—implying that unobserved components account for 25% of the

variation in outcomes—we thus decide to incorporate the regression residual (through

τ g,UBV
fo ) when computing the benchmark probability.

Note that, because we compute Πg,Benchmark
fo using statistically significant coefficients,

the predicted probabilities do not match exactly the observed allocations but almost

perfectly. Appendix Figure C.3 shows that the predicted allocations fit the observed

ones very well: a simple OLS regression of observed shares on predicted shares yields

a coefficient of 0.99 and an R2 of 0.998.

We then compute the counterfactual probabilities when geographic forces are ab-

sent. The difference from Equation (17) is that we set β̂Geo
j “ γ̂Geo

j “ 0, which implies
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τ g,Geo
c “ 1. We estimate the counterfactual probability as

Πg,Geo
fo “

exp pλfoq
`

T g
foa

g
cτ

g,UBV
fo

˘θ

ř

f 1o1 exp pλf 1o1q
`

T g
f 1o1a

g
c1τ

g,UBV
f 1o1

˘θ
, (19)

which measures the talent to job allocation when the world is flat, in which the match-

ing is determined by other factors such as task complementarity (T g
fo), sorting in amenity

agc , the unobserved factor τ g,UBV
fo , and firm-occupation-specific factor λfo.

6.2 Geography and the Matching to High-Paid Jobs

Using the model-predicted and counterfactual probabilities, we first estimate the ef-

fects of geography on the matching to high-paid jobs. We define high-paid jobs as those

in the top 5% of the entry-level wage distribution in our sample. For university g, the

effect of geography on the probability of matching to top 5% paid jobs is

ProbTopGeo
g “

ÿ

fo

´

Πg,Benchmark
fo ´ Πg,Geo

fo

¯

ˆ 1
Top5%
fo . (20)

Here, 1Top5%
fo is an indicator that equals one if the salary of a job (firm and occupation)

is in the top 5%. Figure 5 displays the probability of matching to top 5% job using blue

circles and the effect of geography on this probability, ProbTopGeo
g , using triangles. We

display 30 universities: the fifteen with the highest geographic effect and the fifteen

with the lowest.31

The blue circles in Figure 5 illustrate systematic variation across universities in this

probability of interest. These differences likely reflect a combination of factors, includ-

ing university reputation, educational quality, student ability, and geography. Among

the listed universities, the highest probabilities are observed at Harvard (34.6%), Carnegie

Mellon (34.5%), Georgetown (32.8%), UC Berkeley (29.8%), and Columbia (28.9%). In

contrast, the lowest values are found in institutions such as San Diego State (8.8%)

and Fordham (9.0%).

The red triangles show that geography substantially increases the probability of

matching to high-paid jobs for universities located in the Bay Area and New York City.

This result is unsurprising, given that the Bay Area and NYC together host nearly half

of the top 5% highest-paid entry-level jobs according to Glassdoor. Notably, geographic

proximity increases the probability of matching by 2.3 percentage points (ppts) for UC
31We select these 30 universities among those that have at least an 8% probability of matching to top

5% jobs.
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Santa Cruz, 2.1 ppts for UC Berkeley, 2.0 ppts for Santa Clara University, 1.8 ppts for

San Jose State, and 1.4 ppts for Columbia.
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Figure 5: Geography and the Probability of Matching to Top 5% of Paid Jobs

Notes: The x-axis represents the probability in percentage points. The blue circles plot the

overall probability of such matches. The red triangle plots the value of ProbTopGeo
g , capturing

the effect of geography on this probability. We display 30 universities: the fifteen with the

highest probabilities and the fifteen with the lowest (most negative).

In contrast, geographic disadvantage reduces the probability most strongly for Geor-

gia Tech (5.9 ppts), followed by Carnegie Mellon (5.2 ppts), and by 4.0 ppts for Univer-

sity of Michigan and Tufts. Graduates from other elite universities—including Har-

vard, Northwestern, Brown, and Penn—also appear to face geographic disadvantages

in matching to high-paid jobs. Between the two extremes, geographic differences ac-

count for up to an 8.2 ppt gap in the probability of obtaining a top-paid job.32 In a

recent study, Chetty, Deming and Friedman (2023) show that attending an Ivy-Plus

college triples the likelihood of working in a prestigious firm, relative to attending an
32This value is based on the difference between UC Santa Cruz (+2.3 ppts) and Georgia Tech (–5.9

ppts).
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average flagship public university. Complementing this literature, we find a sizable

geographic premium associated with university location.

6.3 The Geographic Premium in Salary

Next, we quantify the extent to which geographic factors affect the entry salaries of

fresh graduates. To this end, we compute

WageGeo
g “

ÿ

fo

pΠg,Benchmark
fo ´ Πg,Geo

fo q ˆ wagefo. (21)

wagefo denotes the Glassdoor wage posted for firm f and occupation o. Πg,Benchmark
fo and

Πg,Geo
fo are the matching probabilities given in Equation (17) and (19). By taking wagefo

unchanged, our approach is partial equilibrium, and the estimated wage effects from

geography are driven entirely by changes in the matching probability, keeping other

sorting channels—job content, amenities, and unobserved factors—unchanged.

Figure 6 plots the average annual salary (blue circles) and the wage premium as-

sociated with geography (red triangles); the latter is referred to as the geographic pre-

mium. We report results for 30 universities: the fifteen with the highest premiums and

the fifteen with the lowest (most negative) premiums.

Universities differ systematically in the average entry salary earned by their fresh

graduates. Our emphasis is that there is systematic variation in geographic premium

across universities. The largest ones are observed for Columbia University and UC

Berkeley, amounting to $3.1K and $2.4K in annual salary, respectively. Other univer-

sities in the Bay Area or New York City, such as UC Santa Cruz ($1.9K), Santa Clara

($1.2K), and NYU ($1.1K), also rank among the highest.

By contrast, the most notable geographic penalties occur for Carnegie Mellon Uni-

versity (–$6.7K). This large penalty reflects the university’s specialization in training

STEM graduates while being located farther from San Jose and Seattle, where many

large U.S. technology firms are concentrated and wages are among the highest. De-

spite this geographic disadvantage, Carnegie Mellon graduates earn an average annual

salary of $96.3K—higher than most universities displayed in Figure 6. For similar rea-

sons, we also find large location penalties for Georgia Tech (–$6.7K), Brown (–$5.0K),

Emory University (–$4.6K), and the University of Pennsylvania (–$4.2K).

The extent to which geographic factors affect the wages of college graduates de-

pends on several elements: the geographic clustering of U.S. industries and firms, the

skills imparted by universities that give graduates a comparative advantage in certain
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industries or jobs, and the geographic barriers that limit graduate mobility. To analyze

mechanisms that drive variation, Appendix Figure C.4 plots the geographic premium

(y-axis) against the mover premium (x-axis) across cities. We measure the mover pre-

mium as the difference in average wages between movers and stayers among fresh

graduates (2016–2018), which can be estimated directly from our sample. A negative

mover premium implies that, on average, local stayers earn higher wages than those

who migrate.
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Figure 6: Average Wages and the Geographic Premium

Notes: The x-axis represents the average wage in thousands. The blue circles plot the aver-

age wage earned by fresh graduates from each university. The red triangle plots the value of

WageGeo
g , capturing the effect of geography on average earnings. We display 30 universities: the

fifteen with the highest geographic premium and the fifteen with the lowest (most negative).

We find a strong negative correlation: a simple OLS regression yields a coefficient

of -0.07 (s.e. = 0.01) and an R2 of 0.51. It appears that a single variable—the mover

premium—explains more than half of the variation in the geographic premium, un-

derscoring the central role of university location and graduates’ geographic mobility in

shaping job outcomes.

The geographic premiums we discussed so far are expressed in nominal terms. How-
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ever, cities differ substantially in their cost of living (Moretti, 2013, Albert and Monras,

2022), and part of the wages firms offer likely reflects local living costs, especially in

expensive metropolitan areas. To account for this, we use the U.S. Bureau of Eco-

nomic Analysis (BEA) Regional Price Parities (RPPs) for 2018. The RPPs provide rel-

ative price levels across MSAs, covering major expenditure categories such as housing,

transportation, and food, and are constructed using data from the Bureau of Labor

Statistics’ Consumer Price Index, housing price data, and other regional sources. In a

recent study, Diamond and Moretti (2024) demonstrate that the BEA index is strongly

correlated with an alternative price index constructed using detailed consumption data.

We normalize the average value of the RPPs across all cities to one. In 2018, the nor-

malized RPP was as high as 1.26 in San Francisco and 1.20 in New York City, compared

to 1.00 in Pittsburgh (PA), and as low as 0.88 in Jackson (TN). We deflate Glassdoor

wages using each city’s RPP and re-estimate equation (21). Appendix Figure C.5 shows

that adjusting for regional price variation reduces disparities in premiums across uni-

versities to some extent; however, sizable premiums persist for universities located in

large metropolitan areas such as San Jose, San Francisco, and New York.

6.4 The Bay-Area Premium

The evidence has shown that universities in the Bay Area occupy many slots among

the top of the list, which include UC Berkeley (Top 20), UC Santa Cruz (Top 201-1000),

Santa Clara (outside Top 1000), University of San Francisco (outside Top 1000), San

Jose State (outside Top 1000), San Francisco State (outside Top 1000) are all among

the top of the list in Figure 6.

Motivated by this fact, this section estimates the wage premium of studying in the

Bay Area (aggregating over ΩBay, all universities in San Francisco and San Jose), rela-

tive to other cities. Specifically, we estimate the geographic premium for the Bay Area

as
1

NBay

ÿ

gPΩBay

ÿ

fo

pΠg,Benchmark
fo ´ Πg,Geo

fo q ˆ wagefo, (22)

where NBay denotes the number of universities located in the Bay Area that appear

in our sample. The term measures the average geographic premium of attending a

university in the Bay Area (averaged across all local universities). Similarly, we can

use Equation (22) to estimate the geographic premium for any U.S. city c. Taking the

difference allows us to measure how geography differentially affects the entry-level

salaries of graduates from the Bay Area relative to those from city c (referred to as the
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Bay Area premium).

Figure 7 displays the Bay Area premium relative to a given city. Again, we report

results for 30 cities: the fifteen with the highest premiums (above the dashed line)

and the fifteen with the lowest (below the dashed line). The largest geographic disad-

vantage is observed in Charlottesville, VA, with an average nominal wage penalty of

$7.6K. Midwest or southwest cities that host major state universities—such as El Paso

(TX), Tucson (AZ), Lafayette (LA), Ann Arbor (MI), Greenville (SC), Bloomington (IN),

Lansing (MI), Columbus (OH), Pittsburgh (PA), and Fargo (ND)—also appear on this

list. Unsurprisingly, cities such as New York, Bellingham (WA), and San Diego appear

at the bottom of Figure 7. Notably, New York City has a value of $1.0K, implying that

the NYC wage premium is $1.0K lower than the Bay Area premium.
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Figure 7: The Bay Area Premium Relative to a Given City in Nominal (red triangles)
and Real Terms (orange circles)

Notes: The x-axis represents the average wage in thousands. The red triangle plots the value

of the Bay Area premium in nominal terms. The orange circles plot the Bay Area Premium in

real terms. We display 30 universities: the fifteen with the highest Bay Area Premium and the

fifteen with the lowest.

The orange circles represent real terms adjusted based on BEA RPPs. We see that
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the Bay Area premium persists, though to a lesser extent, after accounting for the high

cost of living in the Bay Area.

To place the magnitude of the Bay Area premium in context, we compare it with the

wage premium associated with university ranking tiers. In nominal terms, attending a

Top 20 university carries a premium of $15K, while attending a Top 21–200 university

yields a $7K premium, relative to graduates from institutions outside the Top 1000.33

In real terms, the corresponding premiums are $18K for Top 20 universities and $6K

for Top 21–200 universities.

Using Midwest or Southwest university towns as the benchmark, the Bay Area

premium—ranging from $4.8K to $6.2K—is sizable: it exceeds half the premium of at-

tending a Top 21–200 university (in both nominal and real terms), amounts to roughly

one-third of the nominal premium for the Top 20 universities, and equals about one-

fifth of the real premium for the Top 20 universities.

7 Conclusions

This paper constructs a rich individual-level database by combining detailed informa-

tion from LinkedIn profiles, job postings from Burning Glass Technology, and Glassdoor

data to study geographic mobility and job search of fresh college graduates and analyze

how these outcomes differ across universities of varying rankings and locations.

Using our dataset, we find that although college graduates are highly mobile outside

their university city, most relocate within the same state or to nearby cities. Mobility

patterns vary substantially with university ranking and the local economic opportuni-

ties available in the area where the university is located. We also show that movers

tend to seek better job opportunities and a higher quality of life, consistent with com-

pensating differentials that offset migration costs.

Estimating a model of college graduates sorting into firms and occupations, we find

evidence of positive sorting: graduates from higher-ranked universities are more likely

to match into cognitively intensive jobs and to locate in high-amenity cities. Inter-

estingly, we find that geographic distance significantly reduces the probability of job

matching for most universities, but it has no effect for the most elite institutions. Us-

ing the estimated model, we further quantify how geography shapes the labor market

outcomes for each university. Our estimates reveal a sizable geographic premium in

both nominal and real terms. Although prior research has highlighted the significant
33Graduates from Top 20 universities earn an average salary of $81K, compared with $63K for those

from Top 21–200, and $56K for those from outside the Top 1000.
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premium of attending elite universities, our findings suggest that attending a univer-

sity geographically proximate to large or high-paying firms also offers a considerable

premium.

The retention rate for local graduates is notably low for high-ranking universities

and for cities that lack high-paying jobs. This trend raises important questions about

how cities can retain their college-educated talent. Investing in higher education is one

of the major public expenditures in the U.S. and has long been viewed as a key driver of

long-term economic growth. Our results suggest that policies aimed at attracting pro-

ductive firms may be more effective in fostering growth and development. By creating

an environment that supports high-quality job opportunities, cities can become more

attractive to graduates. Such policies may include offering tax incentives to firms, im-

proving infrastructure, and fostering a business-friendly regulatory environment. We

hope to explore these questions further in future research.
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Table 3: Estimates of Equation (8)

(1) (2) (3) (4) (5)
Cognitive ˆ Top20 0.199˚˚˚ 0.189˚˚˚ 0.166˚˚˚ 0.168˚˚˚ 0.170˚˚˚

(0.043) (0.042) (0.037) (0.037) (0.037)
Cognitive ˆ Top21-200 0.073˚˚˚ 0.074˚˚˚ 0.085˚˚˚ 0.088˚˚˚ 0.086˚˚˚

(0.020) (0.020) (0.019) (0.020) (0.019)
Cognitive ˆ Top201-1000 0.029˚ 0.031˚˚ 0.040˚˚˚ 0.039˚˚˚ 0.038˚˚˚

(0.015) (0.015) (0.014) (0.014) (0.014)
Social ˆ Top20 0.065˚ 0.057 0.045 0.045 0.043

(0.038) (0.037) (0.032) (0.032) (0.032)
Social ˆ Top21-200 0.014 0.014 0.012 0.011 0.013

(0.020) (0.020) (0.017) (0.018) (0.018)
Social ˆ Top201-1000 -0.021 -0.022 -0.014 -0.012 -0.011

(0.018) (0.018) (0.016) (0.016) (0.016)
Routine ˆ Top20 -0.051 -0.051 -0.017 -0.017 -0.017

(0.046) (0.045) (0.036) (0.036) (0.037)
Routine ˆ Top21-200 0.015 0.017 0.023 0.021 0.022

(0.017) (0.017) (0.014) (0.015) (0.015)
Routine ˆ Top201-1000 0.018 0.020 0.018 0.016 0.017

(0.014) (0.014) (0.012) (0.012) (0.012)
Manual ˆ Top20 -0.015 -0.016 -0.006 -0.007 -0.008

(0.032) (0.032) (0.028) (0.028) (0.028)
Manual ˆ Top21-200 -0.026 -0.026 -0.043˚˚˚ -0.043˚˚ -0.040˚˚

(0.017) (0.018) (0.016) (0.017) (0.017)
Manual ˆ Top201-1000 -0.044˚˚˚ -0.044˚˚˚ -0.048˚˚˚ -0.046˚˚˚ -0.044˚˚˚

(0.015) (0.015) (0.014) (0.014) (0.014)
Amenity ˆ Top20 0.091˚˚ 0.148˚˚˚ 0.156˚˚˚ 0.156˚˚˚

(0.036) (0.033) (0.033) (0.033)
Amenity ˆ Top21-200 -0.003 0.031˚˚ 0.032˚˚ 0.032˚˚

(0.013) (0.013) (0.013) (0.013)
Amenity ˆ Top201-1000 -0.028˚˚ 0.005 0.004 0.003

(0.013) (0.010) (0.010) (0.010)
Ldist -0.067˚˚˚ -0.053˚˚ -0.052˚˚

(0.011) (0.021) (0.021)
Ldist ˆ Top20 0.061˚˚ 0.057˚˚ 0.057˚˚

(0.024) (0.029) (0.029)
Ldist ˆ Top21-200 0.016 0.016 0.016

(0.021) (0.022) (0.022)
Ldist ˆ Top201-1000 -0.028˚˚ -0.023 -0.023

(0.013) (0.014) (0.014)
CZ 0.448˚˚˚ 0.428˚˚˚ 0.431˚˚˚

(0.030) (0.090) (0.090)
CZ ˆ Top20 0.177˚ 0.163 0.161

(0.101) (0.107) (0.107)
CZ ˆ Top21-200 0.148˚˚˚ 0.115˚ 0.115˚

(0.056) (0.064) (0.064)
CZ ˆ Top201-1000 0.087˚ 0.066 0.066

(0.045) (0.044) (0.044)
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Table 3: Estimates of Equation (8) (Continued)

(1) (2) (3) (4) (5)
State 0.086˚˚˚ -0.026 -0.026

(0.026) (0.069) (0.068)
State ˆ Top20 0.197˚˚ 0.246˚˚ 0.248˚˚

(0.097) (0.099) (0.099)
State ˆ Top21-200 0.146˚˚˚ 0.181˚˚˚ 0.180˚˚˚

(0.043) (0.049) (0.049)
State ˆ Top201-1000 0.035 0.048 0.047

(0.035) (0.037) (0.037)
Ldist ˆ In-State -0.006 -0.006

(0.036) (0.036)
CZ ˆ In-State -0.211 -0.213

(0.146) (0.146)
State ˆ In-State 0.292˚˚ 0.290˚˚

(0.117) (0.117)
Ldist ˆ Public -0.019 -0.020

(0.021) (0.021)
CZ ˆ Public 0.234˚˚˚ 0.232˚˚˚

(0.083) (0.083)
State ˆ Public -0.131˚˚ -0.129˚

(0.066) (0.066)
Cognitive ˆ Public 0.019

(0.018)
Social ˆ Public -0.018

(0.018)
Routine ˆ Public -0.011

(0.017)
Manual ˆ Public -0.019

(0.015)
Observations 84,904 84,360 84,360 82,463 82,463
Adjusted R2 0.68 0.67 0.74 0.75 0.75

Notes: Columns (1)-(3) report the estimated coefficients for equation (8). Column (1) has

the regressors as the interaction of ranking dummies and BGT tasks; Column (2) adds

amenities, and Column (3) adds geographic variables. Column (4) adds interactions of

public universities and the share of in-state student enrollment. Column (5) adds inter-

actions between public-university status and task measures. The models are estimated

using OLS. The full sample covers 22 occupations, 25492 firms, and 266 universities. Stan-

dard errors are clustered at the firm-occupation level.
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Table 4: Estimates of Equation (9)

(1) (2) (3) (4) (5)
Cognitive ˆ Top20 0.112˚˚˚ 0.110˚˚˚ 0.086˚˚˚ 0.086˚˚˚ 0.085˚˚˚

(0.032) (0.032) (0.027) (0.028) (0.028)
Cognitive ˆ Top21-200 0.029˚ 0.030˚ 0.038˚˚˚ 0.040˚˚˚ 0.040˚˚˚

(0.016) (0.016) (0.015) (0.015) (0.015)
Cognitive ˆ Top201-1000 0.015 0.016 0.020˚ 0.021˚ 0.021˚

(0.013) (0.013) (0.012) (0.012) (0.012)
Social ˆ Top20 0.082˚˚ 0.078˚˚ 0.056˚˚ 0.058˚˚ 0.057˚˚

(0.033) (0.032) (0.027) (0.027) (0.027)
Social ˆ Top21-200 0.018 0.019 0.013 0.014 0.015

(0.015) (0.015) (0.014) (0.014) (0.014)
Social ˆ Top201-1000 -0.015 -0.016 -0.010 -0.008 -0.008

(0.014) (0.014) (0.012) (0.013) (0.013)
Routine ˆ Top20 -0.058˚ -0.053 -0.030 -0.031 -0.031

(0.033) (0.033) (0.027) (0.027) (0.027)
Routine ˆ Top21-200 0.000 0.001 0.001 -0.001 -0.002

(0.014) (0.014) (0.012) (0.012) (0.013)
Routine ˆ Top201-1000 0.016 0.017 0.014 0.011 0.011

(0.011) (0.011) (0.010) (0.010) (0.011)
Manual ˆ Top20 0.024 0.023 0.034 0.036 0.037

(0.028) (0.028) (0.025) (0.025) (0.026)
Manual ˆ Top21-200 0.011 0.010 -0.003 -0.003 -0.004

(0.014) (0.014) (0.014) (0.014) (0.014)
Manual ˆ Top201-1000 -0.014 -0.014 -0.013 -0.011 -0.012

(0.012) (0.012) (0.011) (0.011) (0.011)
Amenity ˆ Top20 0.087˚˚ 0.146˚˚˚ 0.154˚˚˚ 0.154˚˚˚

(0.034) (0.030) (0.031) (0.031)
Amenity ˆ Top21-200 -0.005 0.031˚˚ 0.034˚˚˚ 0.034˚˚˚

(0.013) (0.013) (0.012) (0.012)
Amenity ˆ Top201-1000 -0.024˚ 0.009 0.008 0.008

(0.013) (0.010) (0.010) (0.010)
Ldist -0.066˚˚˚ -0.035˚ -0.035˚

(0.011) (0.020) (0.019)
Ldist ˆ Top20 0.077˚˚˚ 0.062˚˚ 0.062˚˚

(0.024) (0.028) (0.028)
Ldist ˆ Top21-200 0.016 0.014 0.014

(0.019) (0.020) (0.020)
Ldist ˆ Top201-1000 -0.022˚ -0.019 -0.019

(0.013) (0.014) (0.014)
CZ 0.448˚˚˚ 0.465˚˚˚ 0.465˚˚˚

(0.030) (0.089) (0.089)
CZ ˆ Top20 0.184˚ 0.147 0.147

(0.099) (0.105) (0.105)
CZ ˆ Top21-200 0.132˚˚ 0.092 0.092

(0.053) (0.061) (0.061)
CZ ˆ Top201-1000 0.084˚˚ 0.060 0.060

(0.043) (0.043) (0.043)
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Table 4: Estimates of Equation (9) (Continued)

(1) (2) (3) (4) (5)
State 0.066˚˚˚ -0.020 -0.020

(0.026) (0.068) (0.068)
State ˆ Top20 0.277˚˚˚ 0.309˚˚˚ 0.310˚˚˚

(0.102) (0.107) (0.107)
State ˆ Top21-200 0.165˚˚˚ 0.196˚˚˚ 0.196˚˚˚

(0.043) (0.049) (0.049)
State ˆ Top201-1000 0.067˚ 0.075˚˚ 0.075˚˚

(0.034) (0.038) (0.038)
Ldist ˆ In-State -0.032 -0.032

(0.033) (0.033)
CZ ˆ In-State -0.258˚ -0.258˚

(0.138) (0.138)
State ˆ In-State 0.236˚˚ 0.236˚˚

(0.113) (0.113)
Ldist ˆ Public -0.016 -0.016

(0.020) (0.020)
CZ ˆ Public 0.234˚˚˚ 0.235˚˚˚

(0.079) (0.079)
State ˆ Public -0.114˚ -0.114˚

(0.067) (0.066)
Cognitive ˆ Public -0.004

(0.014)
Social ˆ Public -0.005

(0.015)
Routine ˆ Public 0.002

(0.014)
Manual ˆ Public 0.013

(0.013)
Observations 84,281 83,729 83,729 81,828 81,828
Adjusted R2 0.75 0.75 0.81 0.81 0.81

Notes: Columns (1)-(3) report the estimated coefficients for equation (8). Column (1) in-

cludes the interaction of ranking dummies and BGT tasks; Column (2) adds amenities,

and Column (3) adds geographic variables. Column (4) adds interactions of public uni-

versities and the share of in-state students enrollment. Column (5) adds interactions

between public-university status and task measures. All models are OLS estimates. The

full sample covers 22 occupations, 25492 firms, and 266 universities. Standard errors are

clustered by university and reported in parentheses.
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Table 5: OLS Estimates of Equation (8) with Additional Characteristics

(1) (2) (3) (4)
Cognitive ˆ Top20 0.168˚˚˚ 0.185˚˚˚ 0.147˚˚˚ 0.119˚˚˚

(0.037) (0.039) (0.043) (0.037)
Cognitive ˆ Top21-200 0.085˚˚˚ 0.091˚˚˚ 0.071˚˚˚ 0.047˚˚˚

(0.019) (0.020) (0.022) (0.017)
Cognitive ˆ Top201-1000 0.039˚˚˚ 0.041˚˚˚ 0.032˚˚ 0.009

(0.014) (0.014) (0.015) (0.011)
Social ˆ Top20 0.043 0.029 0.054 0.035

(0.032) (0.035) (0.038) (0.032)
Social ˆ Top21-200 0.012 0.000 0.015 0.009

(0.017) (0.019) (0.021) (0.016)
Social ˆ Top201-1000 -0.014 -0.017 -0.010 -0.004

(0.016) (0.017) (0.017) (0.013)
Routine ˆ Top20 -0.015 -0.018 -0.016 -0.005

(0.036) (0.040) (0.042) (0.037)
Routine ˆ Top21-200 0.022 0.023 0.024 0.031˚˚

(0.014) (0.017) (0.018) (0.014)
Routine ˆ Top201-1000 0.018 0.018 0.019 0.022˚˚

(0.012) (0.013) (0.013) (0.010)
Manual ˆ Top20 -0.007 -0.025 -0.026 -0.024

(0.028) (0.029) (0.031) (0.026)
Manual ˆ Top21-200 -0.043˚˚˚ -0.059˚˚˚ -0.060˚˚˚ -0.049˚˚˚

(0.016) (0.017) (0.018) (0.013)
Manual ˆ Top201-1000 -0.048˚˚˚ -0.053˚˚˚ -0.053˚˚˚ -0.042˚˚˚

(0.014) (0.014) (0.015) (0.010)
Amenity ˆ Top20 0.135˚˚˚ 0.172˚˚˚ 0.130˚˚˚ 0.099˚˚˚

(0.033) (0.035) (0.035) (0.033)
Amenity ˆ Top21-200 0.034˚˚˚ 0.040˚˚˚ 0.007 -0.009

(0.013) (0.014) (0.016) (0.014)
Amenity ˆ Top201-1000 0.004 0.001 -0.021 -0.032˚˚˚

(0.010) (0.012) (0.014) (0.012)
Ldist -0.055˚˚˚ -0.031 -0.056˚˚ -0.025

(0.020) (0.025) (0.027) (0.024)
Ldist ˆ Top20 0.055˚˚ 0.064˚˚ 0.043 0.025

(0.028) (0.029) (0.027) (0.025)
Ldist ˆ Top21-200 0.018 0.012 -0.002 -0.013

(0.020) (0.020) (0.018) (0.016)
Ldist ˆ Top201-1000 -0.021 -0.023˚ -0.030˚˚ -0.027˚˚

(0.013) (0.013) (0.013) (0.011)
CZ 0.406˚˚˚ 0.312˚˚˚ 0.388˚˚˚ 0.155

(0.088) (0.116) (0.119) (0.104)
CZ ˆ Top20 0.243˚˚ 0.332˚˚˚ 0.344˚˚˚ 0.305˚˚˚

(0.111) (0.123) (0.126) (0.115)
CZ ˆ Top21-200 0.202˚˚˚ 0.270˚˚˚ 0.260˚˚˚ 0.186˚˚˚

(0.059) (0.066) (0.066) (0.058)
CZ ˆ Top201-1000 0.099˚˚ 0.113˚˚ 0.107˚˚ 0.060

(0.043) (0.046) (0.046) (0.038)
State -0.029 0.051 -0.065 0.058

(0.067) (0.086) (0.087) (0.078)
State ˆ Top20 0.208˚˚ 0.237˚˚ 0.163 0.108

(0.104) (0.110) (0.111) (0.102)
State ˆ Top21-200 0.157˚˚˚ 0.141˚˚˚ 0.100˚˚ 0.063

(0.044) (0.046) (0.048) (0.044)
State ˆ Top201-1000 0.041 0.034 0.014 0.004

(0.034) (0.036) (0.036) (0.033)
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Table 5: OLS Estimates of Equation (8) with Additional Characteristics (Continued)

(1) (2) (3) (4)
Cognitive ˆ Most Selective -0.025 -0.028 -0.024

(0.032) (0.031) (0.028)
Cognitive ˆ Highly Selective 0.038 0.029 0.025

(0.024) (0.023) (0.018)
Cognitive ˆ Selective 0.014 0.019 0.003

(0.015) (0.015) (0.011)
Social ˆ Most Selective -0.010 -0.006 0.001

(0.029) (0.028) (0.022)
Social ˆ Highly Selective 0.005 0.013 0.006

(0.023) (0.023) (0.018)
Social ˆ Selective -0.022 -0.023 -0.008

(0.016) (0.016) (0.012)
Routine ˆ Most Selective 0.011 0.014 0.009

(0.028) (0.027) (0.023)
Routine ˆ Highly Selective -0.022 -0.021 -0.012

(0.020) (0.020) (0.016)
Routine ˆ Selective -0.004 -0.005 -0.007

(0.013) (0.013) (0.010)
Manual ˆ Most Selective -0.011 -0.010 -0.019

(0.023) (0.023) (0.020)
Manual ˆ Highly Selective 0.008 0.009 0.000

(0.020) (0.020) (0.014)
Manual ˆ Selective -0.032˚˚ -0.032˚˚ -0.013

(0.014) (0.014) (0.010)
Amenity ˆ Most Selective -0.035˚ -0.048˚˚ -0.037˚˚

(0.020) (0.020) (0.017)
Amenity ˆ Highly Selective -0.015 -0.032 -0.017

(0.023) (0.023) (0.018)
Amenity ˆ Selective 0.011 -0.002 0.006

(0.010) (0.011) (0.010)
Ldist ˆ Most Selective -0.039˚ -0.049˚˚ -0.053˚˚˚

(0.021) (0.022) (0.020)
Ldist ˆ Highly Selective 0.024 0.011 -0.007

(0.024) (0.025) (0.023)
Ldist ˆ Selective -0.019 -0.017 -0.028

(0.027) (0.027) (0.023)
CZ ˆ Most Selective 0.035 0.013 0.063

(0.102) (0.099) (0.088)
CZ ˆ Highly Selective 0.004 -0.016 0.022

(0.086) (0.086) (0.073)
CZ ˆ Selective 0.168 0.144 0.140

(0.107) (0.107) (0.092)
State ˆ Most Selective -0.128 -0.146˚ -0.146˚˚

(0.079) (0.076) (0.068)
State ˆ Highly Selective 0.056 0.034 0.006

(0.071) (0.073) (0.066)
State ˆ Selective -0.036 -0.019 -0.057

(0.082) (0.081) (0.076)
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Table 5: OLS Estimates of Equation (8) with Additional Characteristics (Continued)

(1) (2) (3) (4)
Ldist ˆ Public -0.029˚˚ -0.025 -0.025 -0.002

(0.014) (0.026) (0.026) (0.022)
CZ ˆ Public 0.192˚˚˚ 0.078 0.085 0.041

(0.054) (0.103) (0.102) (0.087)
State ˆ Public -0.124˚˚˚ -0.105 -0.107 -0.055

(0.036) (0.076) (0.076) (0.070)
Ldist ˆ In-State -0.001 -0.020 -0.018 -0.026

(0.025) (0.027) (0.027) (0.024)
CZ ˆ In-State -0.127 -0.073 -0.103 0.029

(0.118) (0.138) (0.134) (0.114)
State ˆ In-State 0.266˚˚˚ 0.185˚ 0.207˚˚ 0.056

(0.086) (0.099) (0.097) (0.082)
Cognitive ˆ Stem 0.224˚˚˚ 0.192˚˚˚

(0.067) (0.052)
Social ˆ Stem -0.143˚˚ -0.110˚˚

(0.066) (0.049)
Routine ˆ Stem -0.017 -0.035

(0.059) (0.044)
Manual ˆ Stem 0.007 0.003

(0.049) (0.040)
Ldist ˆ Stem 0.135˚˚ 0.107˚˚

(0.055) (0.052)
CZ ˆ Stem -0.157 0.038

(0.190) (0.173)
State ˆ Stem 0.490˚˚˚ 0.292˚˚

(0.158) (0.145)
Amenity ˆ Stem 0.148˚˚˚ 0.135˚˚˚

(0.047) (0.041)
Network 1.675˚˚˚

(0.048)
Observations 84,360 84,360 84,274 84,274
Adjusted R2 0.74 0.75 0.75 0.79

Notes: This table reports the estimated coefficients for equation (8). All columns are

OLS estimates. The full sample covers 22 occupations, 25492 firms, and 266 universities.

Standard errors are clustered by university and reported in parentheses.
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Table 6: Estimates of Equation (8) with Disaggregated Groups

(1) (2) (3) (4)
Cognitive ˆ Top20 0.199˚˚˚ 0.189˚˚˚ 0.167˚˚˚ 0.170˚˚˚

(0.043) (0.042) (0.037) (0.037)
Cognitive ˆ Top21-100 0.077˚˚˚ 0.077˚˚˚ 0.084˚˚˚ 0.087˚˚˚

(0.023) (0.024) (0.022) (0.023)
Cognitive ˆ Top101-200 0.075˚˚ 0.082˚˚ 0.084˚˚˚ 0.089˚˚˚

(0.036) (0.036) (0.032) (0.033)
Cognitive ˆ Top201-500 0.047˚˚ 0.048˚˚ 0.058˚˚˚ 0.058˚˚˚

(0.020) (0.020) (0.018) (0.018)
Cognitive ˆ Top501-1000 0.017 0.021 0.016 0.016

(0.017) (0.018) (0.015) (0.015)
Social ˆ Top20 0.060 0.052 0.043 0.044

(0.038) (0.038) (0.032) (0.032)
Social ˆ Top21-100 -0.016 -0.018 -0.008 -0.008

(0.022) (0.022) (0.019) (0.020)
Social ˆ Top101-200 0.080˚˚˚ 0.080˚˚˚ 0.058˚˚ 0.058˚˚

(0.031) (0.031) (0.025) (0.026)
Social ˆ Top201-500 -0.029 -0.029 -0.017 -0.016

(0.024) (0.024) (0.020) (0.021)
Social ˆ Top501-1000 -0.031˚ -0.034˚ -0.009 -0.007

(0.019) (0.019) (0.016) (0.016)
Routine ˆ Top20 -0.052 -0.052 -0.015 -0.016

(0.046) (0.046) (0.037) (0.037)
Routine ˆ Top21-100 0.041˚˚ 0.041˚˚ 0.035˚˚ 0.031˚

(0.018) (0.018) (0.016) (0.016)
Routine ˆ Top101-200 -0.041 -0.036 -0.006 -0.005

(0.034) (0.034) (0.026) (0.027)
Routine ˆ Top201-500 0.018 0.018 0.019 0.018

(0.018) (0.018) (0.016) (0.016)
Routine ˆ Top501-1000 0.016 0.020 0.016 0.013

(0.015) (0.015) (0.013) (0.013)
Manual ˆ Top20 -0.010 -0.012 -0.007 -0.007

(0.032) (0.032) (0.028) (0.028)
Manual ˆ Top21-100 -0.022 -0.022 -0.036˚ -0.035˚

(0.021) (0.021) (0.019) (0.020)
Manual ˆ Top101-200 -0.040˚ -0.038 -0.058˚˚˚ -0.059˚˚˚

(0.023) (0.023) (0.021) (0.022)
Manual ˆ Top201-500 -0.060˚˚˚ -0.059˚˚˚ -0.061˚˚˚ -0.058˚˚˚

(0.019) (0.019) (0.017) (0.017)
Manual ˆ Top501-1000 -0.030˚ -0.029˚ -0.032˚˚ -0.030˚

(0.017) (0.017) (0.015) (0.015)
Amenity ˆ Top20 0.348˚˚˚ 0.519˚˚˚ 0.547˚˚˚

(0.127) (0.114) (0.116)
Amenity ˆ Top21-100 0.106˚ 0.137˚˚ 0.137˚˚

(0.060) (0.056) (0.055)
Amenity ˆ Top101-200 -0.348˚˚˚ 0.062 0.089

(0.080) (0.056) (0.058)
Amenity ˆ Top201-500 -0.014 0.049 0.054

(0.066) (0.051) (0.051)
Amenity ˆ Top501-1000 -0.171˚˚˚ -0.023 -0.040

(0.066) (0.048) (0.048)
Ldist ˆ Public -0.015

(0.021)
CZ ˆ Public 0.228˚˚˚

(0.081)
State ˆ Public -0.131˚˚

(0.066)
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Table 6: Estimates of Equation (8) with Disaggregated Groups (Continued)

(1) (2) (3) (4)
Ldist -0.067˚˚˚ -0.054˚˚

(0.011) (0.021)
Ldist ˆ Top20 0.061˚˚ 0.058˚˚

(0.024) (0.029)
Ldist ˆ Top21-100 0.044˚ 0.045˚

(0.025) (0.026)
Ldist ˆ Top101-200 -0.048˚˚ -0.048˚˚

(0.022) (0.024)
Ldist ˆ Top201-500 -0.033˚˚ -0.028˚

(0.015) (0.016)
Ldist ˆ Top501-1000 -0.017 -0.013

(0.015) (0.015)
CZ 0.447˚˚˚ 0.428˚˚˚

(0.030) (0.091)
CZ ˆ Top20 0.180˚ 0.167

(0.101) (0.108)
CZ ˆ Top21-100 0.187˚˚˚ 0.163˚˚

(0.065) (0.071)
CZ ˆ Top101-200 0.058 0.013

(0.090) (0.098)
CZ ˆ Top201-500 0.124˚˚ 0.095˚

(0.057) (0.057)
CZ ˆ Top501-1000 0.043 0.032

(0.054) (0.053)
State 0.086˚˚˚ -0.036

(0.026) (0.069)
State ˆ Top20 0.197˚˚ 0.250˚˚

(0.097) (0.099)
State ˆ Top21-100 0.160˚˚˚ 0.193˚˚˚

(0.051) (0.055)
State ˆ Top101-200 0.116˚ 0.165˚˚

(0.065) (0.071)
State ˆ Top201-500 0.017 0.035

(0.045) (0.047)
State ˆ Top501-1000 0.060 0.067˚

(0.038) (0.041)
Ldist ˆ In-State -0.009

(0.035)
CZ ˆ In-State -0.206

(0.147)
State ˆ In-State 0.306˚˚˚

(0.116)
Observations 86,010 85,462 84,360 82,463
Adjusted R2 0.67 0.67 0.74 0.75

Notes: Columns (1)-(3) report the estimated coefficients for equation (8). Column (1) in-

cludes the interaction of ranking dummies and BGT tasks; Column (2) adds amenities,

and Column (3) adds geographic variables. Column (4) adds interactions of public uni-

versities and the share of in-state students enrollment. All models are OLS estimates.

Standard errors are clustered by university and reported in parentheses.
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Table 7: Estimates of Equation (8) using US News Rankings

(1) (2) (3) (4)
Cognitive ˆ Top20 0.181˚˚˚ 0.165˚˚˚ 0.121˚˚˚ 0.122˚˚˚

(0.052) (0.050) (0.042) (0.042)
Cognitive ˆ Top200 0.065˚˚˚ 0.066˚˚˚ 0.063˚˚˚ 0.064˚˚˚

(0.020) (0.020) (0.017) (0.018)
Social ˆ Top20 0.057 0.053 0.043 0.042

(0.046) (0.046) (0.036) (0.036)
Social ˆ Top200 -0.000 -0.000 -0.004 -0.004

(0.020) (0.020) (0.016) (0.016)
Routine ˆ Top20 -0.059 -0.066 -0.030 -0.029

(0.057) (0.056) (0.043) (0.042)
Routine ˆ Top200 -0.007 -0.006 -0.004 -0.006

(0.019) (0.019) (0.015) (0.016)
Manual ˆ Top20 -0.009 -0.009 0.015 0.015

(0.038) (0.038) (0.032) (0.032)
Manual ˆ Top200 0.018 0.019 0.013 0.013

(0.017) (0.017) (0.015) (0.015)
Amenity ˆ Top20 0.088˚˚ 0.144˚˚˚ 0.155˚˚˚

(0.037) (0.035) (0.035)
Amenity ˆ Top200 -0.007 0.035˚˚˚ 0.036˚˚˚

(0.014) (0.013) (0.013)
Ldist -0.106˚˚˚ -0.080˚˚˚

(0.010) (0.020)
Ldistˆ Top20 0.074˚˚˚ 0.062˚˚˚

(0.021) (0.023)
Ldistˆ Top200 0.070˚˚˚ 0.066˚˚˚

(0.021) (0.022)
CZ 0.516˚˚˚ 0.449˚˚˚

(0.036) (0.122)
CZˆ Top20 0.143 0.127

(0.132) (0.141)
CZˆ Top200 0.097 0.089

(0.062) (0.069)
State 0.113˚˚˚ 0.090

(0.025) (0.081)
Stateˆ Top20 0.117 0.142

(0.150) (0.150)
Stateˆ Top200 0.167˚˚˚ 0.179˚˚˚

(0.044) (0.045)
Ldist ˆ Public -0.037

(0.028)
CZ ˆ Public 0.217˚

(0.127)
State ˆ Public -0.125

(0.086)
Ldist ˆ In-State 0.001

(0.046)
CZ ˆ In-State -0.158

(0.202)
State ˆ In-State 0.177

(0.143)
Observations 57,788 57,479 57,479 56,007
Adjusted R2 0.67 0.67 0.75 0.75

Notes: Columns (1)-(3) report the estimated coefficients for equation (8). Column (1) in-

cludes the interaction of ranking dummies and BGT tasks; Column (2) adds amenities,

and Column (3) adds geographic variables. Column (4) adds interactions of public uni-

versities and the share of in-state student enrollment. All models are OLS estimates.

Standard errors are clustered by university and reported in parentheses.
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A Data Appendix

A.1 Data Description
The LinkedIn Data. Our primary data are purchased from Revelio Labs, which compiles information

from publicly available LinkedIn profiles and other sources. LinkedIn is recognized as a major online

platform for professional networking, where individuals voluntarily provide their work experiences and

educational backgrounds for job search and career development purposes. As of 2023, LinkedIn has more

than 1 billion registered members across over 200 countries and territories.34 LinkedIn user profiles es-

sentially function as self-reported resumes, containing detailed information on individuals’ educational

and employment histories. These include the universities they attended, the degrees and fields of study

they pursued, their employers, job titles, and the dates during which they held these positions. In the

United States, a majority of college graduates use LinkedIn (Auxier, Anderson et al., 2021). Our ver-

sion of the LinkedIn data from Revelio Labs has only recently begun to be used in economics research.

A few recent studies have employed it to examine the returns to international migration (Amanzadeh,

Kermani and McQuade, 2024), Indian engineering migrants to the United States (Khanna and Morales,

2025), and the gender skill gap (Dorn, Schoner, Seebacher, Simon and Woessmann, 2025).

Because university names, employer names, and job titles are all self-reported in LinkedIn profiles,

we undertake extensive work to harmonize and standardize this information across our three sources

(LinkedIn, Burning Glass, and Glassdoor). Employer names are cleaned to ensure consistency across

three platforms. The database for LinkedIn (Revelio Labs) provides OCCSOC occupation codes for user

self-reported job titles using internal text-based algorithms. For job titles in Glassdoor, we employ a

large language model (ChatGPT 4o) to obtain OCCSOC occupation codes. University names are also

systematically standardized and linked to external sources of institutional data. To capture university

location, we assign each institution a city and state based on its primary campus location, and then map

these to geographic codes: commuting zone (CZ) and state codes.

Finally, LinkedIn profiles include detailed geographic information about individuals’ current jobs.

Crucially, this data specifies the location of each job—not just the employer’s headquarters—at multiple

levels, including state, metropolitan area, city, and even street address. This granularity enables us to

analyze graduates’ geographic mobility based on the actual location of their employment. Specifically,

we use this job location information to identify where graduates are employed and compare it with the

34For more details, please refer to the Wikipedia page of LinkedIn.

A-1

https://en.wikipedia.org/wiki/LinkedIn


location of their alma mater. This comparison allows us to measure geographic mobility relative to where

graduates attended college.

Since our focus is on job matching among fresh college graduates, we restrict the sample to individu-

als who obtained their bachelor’s degrees (as their highest degree) between 2016 and 2018, are currently

employed by a U.S. firm, and received their college education at a U.S. institution. Our objective is to

measure individuals’ first “primary” job immediately after graduation. We use firm and occupation in-

formation from their 2018 job record. For those reporting multiple jobs in their profile, we select the

position in which they had the longest tenure. We exclude individuals currently working as interns and

those still enrolled in graduate programs (master’s or doctoral).

The Burning Glass Data. The data contains the universal job posting data collected by Burning Glass

Technology (BGT), and was first used in Hershbein and Kahn (2018). We use four BGT task variables

commonly used in the literature: cognitive, social, routine, and manual. Following Spitz-Oener (2006),

Atalay, Phongthiengtham, Sotelo and Tannenbaum (2020), and Deming and Kahn (2018), we measure

these task variables from job advertisements based on keywords.

The BGT data have already processed job titles and mapped them to OCCSOC codes. Location

information for vacancies is also standardized and available at multiple geographic levels (MSA, CZ, and

state codes), which we can directly use. Employer names, however, are not fully cleaned. We harmonize

and standardize these to create a crosswalk with LinkedIn and Glassdoor (see Appendix A.2).

We measure task intensity using Burning Glass Technologies (BGT) job advertisements, focusing

on cognitive, social, routine, and manual tasks as captured by the skill requirements listed in job ads.

Specifically, BGT reports whether a given skill (from thousands of listed skills) is required for each job

title. For each task category, we count the number of required skills and compute task measures as

percentile rankings across all postings. We then take the average across postings that share the same

firm name and occupation code. These BGT task variables are thus measured at the firm and occupation

levels, and each variable is standardized to range between 0 and 1.

For cognitive tasks, we based our selection on two sets of words. The first set includes those related

to Spitz-Oener (2006). The second set incorporates words that refer to advanced computer software or

skills. The selected words are as follows:

• problem solving, research, analytical, critical thinking, math, statistics, development

• Microsoft C#, Microsoft SQL, Microsoft server, social media platforms, virtual private networking,

Microsoft visual C++, C (programming language), statistics, statistical software, software devel-

opment, simulation software, scripting, sql databases and programming, neuroscience, machine

learning, mathematics, aerospace engineering, application programming interface (API), appli-

cation development, automation engineering, big data, C and C++, cache (computing), chemical

engineering, cloud computing, computer hardware, data analysis, data mining, data science

For social tasks, we adopt the keywords based on Deming and Kahn (2018). These words are

• communication, teamwork, collaboration, negotiation, presentation, supervisory, leadership, man-

agement, mentoring, staff

For routine tasks, we based our selection on two sets of words. The first set includes words directly

related to the administrative nature of jobs. The second set includes software commonly used by admin-
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istrative staff.

• budget, accounting, cost, account management, admin, billing, administration, education admin-

istration

• Microsoft, spreadsheet, Photoshop, Google Docs, Google Maps, Google Drive, Google apps, Macin-

tosh OS, YouTube, Facebook, payroll, accounting and finance software, administrative support

• human resource management systems, human resources software, identity management, record

keeping

Manual tasks use the following keywords:

• customer, client, service, physical abilities, repair, cleaning, sales

The Glassdoor Data. Our data source for salary is collected from Glassdoor. Glassdoor is an online

platform where workers can review employers, report their earnings, and search for jobs. To encourage

participation, Glassdoor uses a “give-to-get” model: users who submit an employer review or salary re-

port gain access to others’ anonymous data. Users share a wide range of information, including their

compensation details such as base pay, bonuses, currency, and job-related information such as years of

work experience, employment status, job title, location, and employer. To keep access, users must update

their data annually if they have not submitted a recent review or salary report. For our research pur-

poses, the dataset includes rich employer-employee matches with detailed information about individual

workers.

We obtain a snapshot of Glassdoor data collected between September and October 2024, which in-

cludes detailed wage information by firm, occupation, location, and years of experience. The original

sample contains 183,257 companies and 10.5 million wage records, of which 5.04 million are at the em-

ployer–title level and 5.45 million at the employer–title–location level. For use in our study, we match

job titles from Glassdoor to OCCSOC occupation codes, company names to those in Burning Glass and

LinkedIn, and job locations to commuting zone (CZ) codes.

A.2 Data Processing
Step 1: Standardizing Employer’s Names across Three Sources. Our analysis draws on firm-

level information from Burning Glass Technologies (BGT), LinkedIn, and Glassdoor. Since our empirical

analysis relies heavily on task variables from BGT, we standardize firm names across all three sources

and focus primarily on the set of firms that appear in both LinkedIn and the BGT database. The original

BGT records are at the firm-occupation-location-time level and are described in detail in Section A2.

Details on the standardization and matching procedures are provided below.

1. BGT firm list. We retrieve the original firm names from BGT, which include 462,295 unique,

non-standardized entries. Since the names in BGT are extracted from job postings and often vary

in how company names are displayed, multiple records may correspond to the same firm.

Following the standardization method used in Hall, Jaffe and Trajtenberg (2001), we employ a

series of cleaning routines for organization names and create two versions of cleaned firm names.

The “standard name" retains basic firm-related words, such as “GROUP" or “INC", while the “stem
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name" is a shorter version that contains only the company’s name that has been simplified to its

most basic form.35 Examples of the standardized results are provided in Table A.1. We use the

BGT “stem name" as the tracking benchmark to match firm names across BGT, LinkedIn, and

other databases. Firm names are cleaned and standardized using source-specific methods, with

different matching techniques applied to align them to the BGT “stem name".

Table A.1: Examples of BGT Name Standardization

BGT name Standard name Stem name
Belimo BELIMO BELIMO
Belimo Air Controls BELIMO AIR CONTROLS BELIMO AIR CONTROLS
Belimo Air Controls Incorporated BELIMO AIR CONTROLS INC BELIMO AIR CONTROLS
Belimo Aircontrols Usa Incorporated BELIMO AIRCONTROLS USA INC BELIMO AIRCONTROLS USA
Belimo Americas BELIMO AMERICAS BELIMO AMERICAS
Tesla TESLA TESLA
Tesla Gigafactory TESLA GIGAFACTORY TESLA GIGAFACTORY
Tesla Incorporated TESLA INC TESLA
Tesla Motors TESLA MOTORS TESLA MOTORS
Notes: This table provides examples of how BGT names are standardized and stemmed.

After standardization, some firms may share the same standard name or stem name. For example,

there are 455,238 unique standard names and 423,149 unique stem names out of 462,295 origi-

nal BGT firm names. As shown in the table above, “TESLA”, “TESLA MOTORS”, and “TESLA

GIGAFACTORY” essentially refer to the same firm, which we collapse into a single entity in the

fuzzy matching procedure.

2. Matching with LinkedIn firm list. To align with other data sources and our research design,

we filter a list of LinkedIn users who had active job experience in 2018. We then extract all job

records for those users across all time periods. This approach yields a sample of 196,167,307 job

records from 5,899,025 U.S. firm names, each assigned a unique ID by the data vendor. As the data

are self-reported, multiple records may correspond to the same firm. To reconcile firm names with

those in the BGT dataset for research purposes, we perform a similar standardization process to

obtain both standardized and stemmed firm names. As before, the “stem name” is used to match

firms across the BGT and LinkedIn datasets. Examples are provided in Table A.2.

Table A.2: Examples of LinkedIn Name Standardization

LinkedIn name Standard name Stem name
BJ TERRONI CO BJ TERRONI CO BJ TERRONI
B.J. Terroni Co., Inc. BJ TERRONI CO INC BJ TERRONI
B.J. Terroni Company, Inc BJ TERRONI CO INC BJ TERRONI
BJ Terroni Company, Inc BJ TERRONI CO INC BJ TERRONI
JPMorgan Chase JP MORGAN CHASE JP MORGAN CHASE
JP Morgan Chase JP MORGAN CHASE JP MORGAN CHASE
J.P. Morgan Chase JP MORGAN CHASE JP MORGAN CHASE
JPMorgan Chase Bank JP MORGAN CHASE BANK JP MORGAN CHASE BANK
JPMorgan Chase Bank, N.A. JP MORGAN CHASE BANK NA JP MORGAN CHASE BANK NA
Notes: This table provides examples of how company names found on LinkedIn are standardized and stemmed
for analysis.

Again, after standardization, some firms may share the same standard name or stem name. For

example, there are 5,699,863 unique standard names out of 5,899,025 unique original LinkedIn

US firm names. As shown in the table above, “JP MORGAN CHASE”, “JP MORGAN CHASE

35The algorithm used can be downloaded here.
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BANK”, and “JP MORGAN CHASE BANK NA” essentially refer to the same firm, which we col-

lapse into a single entity in the fuzzy matching procedure. The number of records in LinkedIn

firms is larger than that in the BGT firm list. We use the shorter BGT firm list as the master file

and perform a left join with the matched LinkedIn firms. To this end, we carry out a three-step

matching procedure as follows.

• Exact matching using standard names. Initially, records are compared using the standard

names from both lists. If the standard names are identical, the records are considered a

match.

• Exact matching using stem names. For records not yet matched, the next step uses "stem

names." Similar to the first step, but using a potentially simplified or base form of the names

(e.g., removing suffixes or prefixes). Matches are made when stem names match exactly

between the two lists.

• Fuzzy matching. For records that remain unmatched after exact matching attempts, a fuzzy

matching technique is applied. This process is restricted to name pairs where the first six

characters are identical. Fuzzy matching algorithms generate similarity scores based on

standard names and based on stem names. Records are retained if both generated similarity

scores are above 0.85.36

Through the procedure described above, we identify 51,363 disambiguated firm names that link

LinkedIn records with BGT data. These disambiguated employers are associated with 75,037,667

jobs (firm–occupation–location), accounting for 38.3% of the original sample. Non-matched records

can be attributed to three main factors: (1) we currently consider only LinkedIn positions from

2018, and therefore the LinkedIn sample does not fully overlap with the coverage of BGT; (2)

the matching scheme may not capture all potential firm matches, as we adopt a conservative

approach that prioritizes the accuracy of matched records; and (3) all firm names with stemmed

name lengths shorter than three characters are excluded from the analysis. Among all matched

records, 92% are based on exact matches using either standardized or stemmed names, while the

remaining 8% rely on fuzzy matching. Examples of matched records are provided in Table A.3.

Table A.3: Examples of BGT and LinkedIn Name Matching Methods

Matching method BGT name LinkedIn name
Exact standard/stem name Blue Ridge Sales blue ridge sales inc
Exact standard/stem name Blue Rose Consulting Llc blue rose consulting group, inc.
Exact standard/stem name Blue Sky Property blue sky property group
Fuzzy matching Blue Streak Reprographic blue streak reprographics
Fuzzy matching Blue Water Automotive Systems blue water automotive, inc
Fuzzy matching Blue Willow Counseling blue willow counseling ctr
Notes: This table illustrates examples of exact and fuzzy matching between BGT and LinkedIn company
names.

3. Matching with Glassdoor firm list. The original Glassdoor sample consists of 5,448,727 wage

records at the employer-title-location level and an additional 5,048,711 records at the employer-

title level. These wage records are associated with 183,267 unique employer names. Using the

36We use Stata function matchit to create the similarity scores. We experiment with alternative meth-
ods using different lengths of the initial characters as a starting point and different score cutoffs. The
current approach yields similar results to other optimized combinations.
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same matching procedures described above, we disambiguate these names and match them with

firms in the BGT dataset. Specifically, we apply the standardization algorithm, match based on

standardized and stemmed names, and employ the same fuzzy matching approach. As a result,

we identify 12,175 disambiguated firm names that can be matched with our BGT sample. These

matched employers account for 66.8% of the wage records in the Glassdoor dataset. Examples of

matched records are provided in Table A.4.

Table A.4: Examples of BGT and Glassdoor Name Matching Methods

Matching method BGT name Glassdoor name
Exact standard/stem name Bahwan Cybertek, Inc Bahwan CyberTek
Exact standard/stem name Bain Company Incorporated Bain & Company
Exact standard/stem name Worldwide Flight Services Incorporated Worldwide Flight Services
Fuzzy matching Zeeland Lumber Supply Company Zeeland Lumber & Supply
Fuzzy matching Marmic Fire Safety Company Incorporated Marmic Fire & Safety
Fuzzy matching Hard Rock Hotels And Casinos Hard Rock Hotel & Casino
Notes: This table provides examples showing how company names from BGT are matched with Glassdoor names
using exact and fuzzy matching methods.

Step 2: Standardizing OCCSOC Codes of Job Titles for Three Sources. Our study requires occu-

pation information that can be linked to standard OCCSOC codes. The occupation titles associated with

these codes are obtained from IPUMS USA. In total, 487 distinct occupations are identified. We summa-

rize how this occupation information is utilized across the three main datasets used in our analysis.

1. LinkedIn job titles. The LinkedIn data provider, Revelio Labs, assigns an OCCSOC code to each

job title using an internal text-based algorithm. In the 2018 LinkedIn dataset, 385 distinct OCC-

SOC codes are identified. Occupations not captured by this process are primarily labor-intensive

roles, which are typically underrepresented in LinkedIn data.

2. Burning job titles. The job posting data from Burning Glass Technologies (BGT) includes OCC-

SOC codes directly, which have been validated and used in the literature (e.g., Braxton and Taska

(2023)).

3. Glassdoor job titles. Job titles in the Glassdoor wage data are highly non-standard and noisy.

From the full sample, we observe 572,691 distinct job title descriptions. To standardize these, we

utilize ChatGPT-4o to match each title to the closest OCCSOC code, resulting in 563,294 successful

matches(match rate=98.4%). A summary of the results is provided in Table A.5.

Table A.5: Examples of Job Title Matching Between Glassdoor and OCCSOC

Glassdoor Job Title Matched OCCSOC Code Matched OCCSOC Title
Assistant Vice President Consultant Risk Tech 15-1199.09 Risk Management Specialists
Senior Systems Data Analyst 15-2041.01 Data Scientists
Associate Audiovisual Technician 27-4011.00 Audio and Video Technicians
Tax Servicing Specialist 13-2082.00 Tax Preparers
Debt Consolidation 13-2072.00 Loan Officers
Financial Controller 11-3031.00 Financial Managers
Notes: This table shows examples of how job titles from Glassdoor are matched to OCCSOC codes and standardized
occupational titles.
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Step 3: Standardizing LinkedIn University Name and Matching to World Ranking and IPEDS.
Our analysis requires university ranking and location. We perform the following procedures to obtain

this information.

1. LinkedIn university names. LinkedIn provides user-generated education information, result-

ing in high variability. This includes differences in the type of degree, field of study, program

details (if provided), and the university name. As shown in Table A.6, the self-reported univer-

sity names are particularly noisy, as they often include various name variants, abbreviations,

department names, campus or school designations, and entries in multiple languages. For exam-

ple, column (1) shows how Harvard University is self-reported by LinkedIn users, and column (2)

shows the example for Purdue University.

Table A.6: Examples of University Name Variations

Example 1 (Harvard) Example 2 (Purdue)
Harvard Purdue University
Harvard University Purdue Global University
Harvard Law School Purdue North Centeral
Harvard University Extension School Purdue School of Engineering and Technology IUPUI
Harvard College Purdue U Indiana U
Harvard Business School Purdue College of Technology Columbus
HBS Purdue University Calumet
Harvard University Kennedy School of Government Purdue University Daniels School of Business
John F. Kennedy School of Government Purdue University Global
Harvard T.H. Chan School of Public Health Purdue University Krannert School of Management

Notes: This table presents examples of how the same institution can appear under different names, illus-
trating the need for name normalization in university data.

We filter degrees and associated university names for analysis using the following criteria:

• In our main sample, we first consider a list of users with a U.S.-based job and extract all

education information for those users, obtaining 79,407,923 degree records.

• We retain degrees at the bachelor’s level and above—specifically, bachelor’s, master’s, and

doctoral degrees.

• We keep only records associated with U.S. universities. Since the country information is

missing for many institutions, we infer the university’s country based on the most frequent

job location of its graduates.

• We drop records with a missing degree start year.

• We conduct preliminary cleaning by removing special symbols from university names.

The above procedure results in 31,696,635 degree records associated with 426,388 unique univer-

sity name entries, which remain highly noisy.

2. University rankings and a list of universities to consider. The noisy nature of LinkedIn

university names hinders our ability to disambiguate institutions and match them with external

datasets. To address these challenges, we construct a list of major U.S. universities to restrict our

sample to a meaningful subset of records for further data cleaning. This list is based on prominent

university rankings, which naturally provide the ranking needed for additional analysis. Specifi-

cally, we combine the following three sources:
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• World University Rankings (WUR): WUR provides annual rankings for 2,000 global univer-

sities, among which we consider 358 universities located in the United States. For our study

period, we use the 2019 edition of the WUR rankings.

• US News37: The U.S. News ranking includes 2,145 universities, but only the Top 1,000 insti-

tutions are assigned a specific rank; universities beyond the Top 1,000 are unranked. Among

these, 284 are U.S.-based universities, of which 197 are ranked.

• Universities considered in Chetty et al. (2020), including over 2000 US universities.

There is substantial overlap across the three university lists, although institution names often

appear in varied forms. We merge the lists and standardize university names before matching

them to the LinkedIn database, ultimately identifying 2,300 distinct U.S. universities. The com-

position of the final university list used in our analysis is summarized in Table A.7. Notably, 235

universities (10.2%) appear in all three lists, while the list from Chetty et al. (2020) alone covers

1,925 universities (83.7%).

Table A.7: Source of the University
List

Sources Freq Percent
Chetty et al. (2020) 1,925 83.70
US News 16 0.70
US News, WUR 94 4.09
US News, WUR, Chetty et al. (2020) 235 10.22
WUR 30 1.30
Total 2,300 100.00

Notes: This table summarizes the sources used to de-
termine universities analylized in our study. WUR
refers to the World University Rankings.

3. Matching LinkedIn university names. We implement a multi-step matching procedure be-

tween LinkedIn university entries and the standardized school list. This process begins with

426,388 unique university name entries from LinkedIn, as filtered in the preceding stage.

• Exact and fuzzy matching. To obtain matched records, we experiment with both exact and

fuzzy matching approaches in an iterative fashion. We begin by matching records with exact

character strings. We then compute similarity scores using a fuzzy matching algorithm.38

Several heuristics prove useful in identifying matches. For example, when the first 12 char-

acters of university names are identical and the similarity score exceeds 0.8, the records are

generally correctly matched.

• First-30-character matching. University names with the first 30 characters identical are

also found to match with high probability.

• Manual verification. We manually verify unmatched records where university names ap-

pear more than 2,000 times in the entire database.

• ChatGPT-assisted matching. As explained above, raw university names from LinkedIn

often include abbreviations, department names, school names, program names, or even mul-

tiple languages. We utilize ChatGPT to assist in identifying the correct matched institutions

in such cases.
37We retrieve the ranking information from US News as of 3/13/2023.
38We again use the Stata function matchit to generate similarity scores.
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Through the matching procedure described above, we successfully linked 20,543 raw LinkedIn

university name entries to our standardized list of U.S. universities, corresponding to 2,170 major

institutions. These matched universities are associated with 26,691,378 degrees held by LinkedIn

users working in 2018, representing 84.2% of the original filtered dataset (31,696,635 records).39

A summary of the matched records is presented in Table A.8.

Table A.8: LinkedIn University Matching Methods

Match Method Raw LinkedIn Universities Matched Degrees Matched
Exact and fuzzy 2,684 8,639,110
First-30-character 11,320 50,746
Manual 119 742,885
ChatGPT-assisted 6,420 17,258,637
Total 20,543 26,691,378

Notes: This table provides the number of universities and degrees
matched using various methods, including traditional exact/fuzzy match-
ing, manual review, and ChatGPT-assisted matching.

Step 4: Standardizing the Geographic Information of Jobs and Universities. For our research

purposes, we require city-level geographic information for the job locations listed in LinkedIn and Glass-

door, as well as for users’ graduating universities.

1. Job location in LinkedIn. As explained above, we begin by extracting LinkedIn users with an

active job position in 2018, and then retrieve all available job history associated with those users.

The resulting dataset includes 3.89 million unique job location records. However, the data is noisy,

as it includes geographic information at varying levels of granularity—such as state, county, city,

and street levels. For our research purposes, we focus on extracting U.S. city-level information

from the raw address field.

• Extract Cities. We start with a list of 31,254 city names40. We search the job location ad-

dresses using city names as keywords and require the state information to be consistent. We

also manually correct various issues, such as abbreviations (e.g., "NYC" for New York City)

and ambiguous city names that appear in multiple states. After cleaning and validation,

we successfully identify 2,998,495 records with reliable city-level information. The remain-

ing records are manually reviewed, found to be inaccurate or incomplete, and subsequently

excluded. Examples are provided below in Table A.9.

• Match with CZ Codes. The geographic coordinates of the extracted cities are obtained us-

ing the Google Geocoding API and are mapped to Commuting Zone (CZ) boundaries (based on

the 1990 definition)41, as well as to Metropolitan and Micropolitan Statistical Areas. Among

the 75,037,667 job positions matched with firm names from the Burning Glass database,

68,663,767 (91.5%) are successfully associated with a city name and thus assigned with a

CZ code.

39The 26,691,378 LinkedIn users include individuals who graduated in any year, regardless of the
employer or occupation reported.

40Source: SimpleMaps.
41Source: The Health Inequality Project.
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Table A.9: Examples of Location Extraction and CZ Code Inference

Raw Location in LinkedIn State Extracted City Inferred CZ Code
45 W. 111th Street, Chicago, IL 60627 Illinois Chicago 16001
1356 Bellevue St. Green Bay, WI Wisconsin Green Bay 55004
5500 Cloverleaf Pkwy Cleveland Ohio Cleveland 39002
Shiawassee Michigan area. Michigan – –
United States, MI, Orion Township Michigan – –
Unit Number 4, DDA Local Shopping Centre, Hemkunt Co Colorado – –
Central, Nebraska Nebraska – –

Notes: This table shows examples of how raw LinkedIn location strings are parsed to extract U.S. states,
cities, and commuting zone (CZ) codes.

2. Job location in Glassdoor. We also require city-level information for the Glassdoor wage

records. Among 3,952,145 wage records with location information linked to employers matched

with Burning Glass firms, there are 24,246 unique location descriptions. We apply the same

matching approach described above. After this process, 8,913 records remain unmatched. Given

that Glassdoor location data is relatively clean, we use the Google Geocoding API to extract precise

geographic coordinates for these remaining records. In the final sample, we successfully obtained

city and CZ information for 3,950,469 out of 3,952,145 wage records. Some examples are provided

in Table A.10.

Table A.10: Examples of Location Extraction from
Glassdoor and CZ Code Inference

Raw Location in Glassdoor State Extracted City Inferred CZ Code
Austin, TX Texas Austin 31201
Bala Cynwyd, PA Pennsylvania Bala Cynwyd 19700
La Jolla, CA California La Jolla 38000
Whippany, NJ New Jersey Whippany 19600

Notes: This table shows how structured location data from Glassdoor job
postings is parsed and linked to commuting zone (CZ) codes.

3. University location in LinkedIn. For each university, we extract geographic coordinates using

the Google Geocoding API and map them to cities, Commuting Zone (CZ) boundaries, Metropolitan

and Micropolitan Statistical Areas.

The data we processed includes college graduates from all U.S. institutions across all graduating

years, covering 13.7 million US employees. For our analysis, we restrict the sample to LinkedIn users

who: (1) received a bachelor’s degree (as their highest degree) between 2016 and 2018 from a U.S. in-

stitution ranked in the Top 2000 of the WUR; (2) were employed in the United States in 2018; (3) have

employer names and occupational titles that can be clearly identified and matched to the BGT data; and

(4) have identifiable employer geographic locations. To improve estimation precision, we further restrict

the sample to U.S. universities with at least 100 LinkedIn users.

We also restrict the analysis to 266 U.S. universities ranked in the WUR.42 Our final sample covers

266 universities, 25492 distinct firms, and a total of 244,632 LinkedIn users.43

42WUR ranks the top 2,000 universities globally, of which 348 are U.S. universities.
43Throughout the paper, we define a firm as the combination of a company name and the location of

its establishment. A firm enters our sample if at least one LinkedIn user is observed as employed there.
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B Validating the Sample
Since BGT data has been widely used and validated in previous studies (Hershbein and Kahn, 2018,

Atalay et al., 2024), we focus on validating our LinkedIn sample in various ways.

B.1 Validating the LinkedIn Sample
We first assess the spatial representativeness of the LinkedIn data by comparing it with the ACS. For

both datasets, we restrict attention to workers whose highest degree is a college degree and who were

employed in 2018. The left panel of Figure B.1 plots each commuting zone’s share of national college

graduate employment using LinkedIn data (y-axis) and ACS data (x-axis). The dashed line represents

the 45-degree line. Most commuting zones lie close to this line, indicating a high degree of similarity

in employment shares between the two datasets. Nonetheless, LinkedIn users appear to be overrepre-

sented in a few major cities, such as New York, San Francisco, and Seattle, and underrepresented in

others, such as Los Angeles, Newark. Across U.S. commuting zones, the correlation between city sizes

implied by the two datasets is high: the correlation equals 0.95, and the OLS regression slope equals

1.12 (s.e. = 0.01).

We next examine the occupational representativeness of the LinkedIn data. The right panel of Fig-

ure B.1 plots the shares of employment across two-digit SOC occupations using LinkedIn data (y-axis)

and ACS data (x-axis). Again, most points lie close to the 45-degree line. Perhaps as expected, LinkedIn

users are disproportionately represented in high-skilled, business- and technology-oriented occupations

such as business and finance, and computer and mathematics, while they are underrepresented in ser-

vice and administrative occupations such as education, sales, and office administration. Once more, we

find a strong correlation between the two datasets: the correlation equals 0.92, and the OLS regression

slope equals 0.98 (s.e. = 0.09).
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Figure B.1: Comparison of LinkedIn and IPUMS-ACS Data: Commuting Zones (left)
and Occupations (right)

Our third validation exercise examines the extent to which LinkedIn data represent graduating class

sizes across U.S. universities. Specifically, we compare the share of graduates from each university in
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LinkedIn with that reported in the Integrated Postsecondary Education Data System (IPEDS), published

by the National Center for Education Statistics. For both data, we use LinkedIn users who graduated

between 2016 and 2018. Figure B.2 plots the national share of graduates by university, with LinkedIn

data on the y-axis and IPEDS data on the x-axis. For comparability, shares are expressed as percentages.

We find a strong positive relationship between the two measures. An Ordinary Least Squares (OLS)

regression yields a coefficient of 1.76 (standard error = 0.038), with an R2 of 0.73.

These results indicate that LinkedIn data are, to a considerable extent, representative of the U.S.

college-educated labor force and graduating class sizes.
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Figure B.2: Comparison of College Class Sizes: LinkedIn vs. IPEDS

B.2 Validating the Glassdoor Wages
Glassdoor wage data are available at the firm, city, and occupation levels. We validate these data in

three ways. First, we compute the average Glassdoor wage by commuting zone and compare it with

corresponding estimates from the ACS. In the ACS, wages are calculated for college graduates who are

full-time workers (defined as working more than 35 hours per week and more than 40 weeks per year).

The left panel of Figure B.3 compares the average annual salaries from the two sources across 722

U.S. CZs. The dashed line represents the 45-degree line. The two measures are strongly correlated:

a simple regression of Glassdoor wages on ACS wages yields a coefficient of 0.71 and an R2 of 0.23.

The right panel of Figure B.3 compares average annual salaries across occupations. Using 22 two-digit

OCCSOC occupations, a simple regression produces a coefficient of 1.03 and an R2 of 0.84.

Finally, Figure B.4 compares average annual salaries across CZ–occupation pairs, where a simple

regression yields a coefficient of 0.87 and an R2 of 0.55. Taken together, the evidence indicates that

Glassdoor wage data captures much of the variation in wages across cities and occupations.
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Figure B.3: Annual Wage by Commuting Zones (left) and Occupations (right): Glass-
door vs. ACS
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C Tables and Figures
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Figure C.1: Spatial Distribution of Top 20 university Graduates and Jobs: 90th Per-
centile (Left) and 75th Percentile (Right) as High-Paying Jobs
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Figure C.2: The Log Share of g-worker Choosing a Firm, Recent Graduates (2016-2018)
versus Former Graduates (2005-2014)

This figure plots the log share of graduates from a given college choosing a firm, for fresh graduates

(2016-2018) against early cohorts who graduated before 2014. The dashed line plots the linear fit, which

shows a slope coefficient of 0.844 (s.e. = 0.006) and an R2 of 0.662 .
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Figure C.3: The University-to-Job Allocation Shares, Data vs. Model-predicted Shares

This figure plots the log share of graduates from a given college choosing a firm, for fresh graduates

(2016-2018), against early cohorts who graduated before 2014. The dashed line plots the linear fit,

which shows a slope coefficient of 0.844 (s.e. = 0.006) and an R2 of 0.662 .
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Figure C.4: Geographic Premium (y-axis) Against Mover Premium (x-axis)

This Figure plots the geographic premium (y-axis) against the mover premium (x-axis) across cities. We

measure the mover premium as the difference in average wages between movers and stayers among

fresh graduates (2016–2018), directly estimated from our sample. A negative mover premium implies

that, on average, local stayers earn higher wages than those who migrate.
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Figure C.5: Average Wages and Geographic Premium in Real Terms

Figure C.5 reports results for 30 universities: the fifteen with the highest premiums and the fifteen with

the lowest (most negative) premiums in real terms. We select these 30 universities from those with an

average annual salary of at least $65K.
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Table C.1: Admission Criteria by College Tiers

College Tier
Minimum

SAT Scores

Minimum

ACT Scores

Rankings

in High school

Most selective 655 29 Top 10-20%

Highly selective 620 27 Top 20-35%

Very selective 573 24 Top 35-50%

Selective 500 21 Top 50-65%

Less selective below 500 below 21 Top 65%

Nonselective None None None

Notes: This table shows the SAT/ACT scores and the rank-

ing in high school transcripts or class rank that are typically

required by college admission. The information is based on

Barron’s Profiles of American universities (Barron’s Educa-

tional Series, 2017).
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